|
| 1 | +"""Collection of functions to get data from UO SRML. |
| 2 | +""" |
| 3 | +import numpy as np |
| 4 | +import pandas as pd |
| 5 | + |
| 6 | + |
| 7 | +def read_srml(filename): |
| 8 | + """ |
| 9 | + Read SRML file into pandas dataframe. |
| 10 | +
|
| 11 | + Parameters |
| 12 | + ---------- |
| 13 | + filename: str |
| 14 | + filepath or url to read for the tsv file. |
| 15 | +
|
| 16 | + Returns |
| 17 | + ------- |
| 18 | + data: Dataframe |
| 19 | + A dataframe with datetime index and all of the variables listed |
| 20 | + in the `var_map` dict inside of the map_columns function, along |
| 21 | + with their associated quality control flags. |
| 22 | +
|
| 23 | + Notes |
| 24 | + ----- |
| 25 | + Note that the time index is shifted back one minute to account for |
| 26 | + 2400 hours, and to avoid time parsing errors on leap years. Data values |
| 27 | + on a given line should now be understood to occur during the interval |
| 28 | + extending from the time of the line in which they are listed to |
| 29 | + the ending time on the next line, rather than the previous line. |
| 30 | + """ |
| 31 | + tsv_data = pd.read_csv(filename, delimiter='\t') |
| 32 | + year = tsv_data.columns[1] |
| 33 | + data = format_index(tsv_data, year) |
| 34 | + # Rename and drop datetime columns |
| 35 | + data = data[data.columns[2:]].rename(columns=map_columns) |
| 36 | + |
| 37 | + # Quality flags are all labeled 0, but occur immediately after their |
| 38 | + # associated var so we create a dict mapping them to var_flag for renaming |
| 39 | + flag_label_map = {flag: data.columns[data.columns.get_loc(flag)-1]+'_flag' |
| 40 | + for flag in data.columns[1::2]} |
| 41 | + data = data.rename(columns=flag_label_map) |
| 42 | + # For data flagged bad or missing, replace the value with np.NaN |
| 43 | + for col in data.columns[::2]: |
| 44 | + data[col] = data[col].where(~(data[col+'_flag'] == 99), np.NaN) |
| 45 | + return data |
| 46 | + |
| 47 | + |
| 48 | +def map_columns(col): |
| 49 | + """Map column labels to pvlib names. |
| 50 | +
|
| 51 | + Parameters |
| 52 | + ---------- |
| 53 | + col: str |
| 54 | + Column label to be mapped. |
| 55 | +
|
| 56 | + Returns |
| 57 | + ------- |
| 58 | + str |
| 59 | + The pvlib label if it was found in the mapping, |
| 60 | + else the original label. |
| 61 | +
|
| 62 | + Notes |
| 63 | + ----- |
| 64 | + var_map is a dictionary mapping SRML data element numbers |
| 65 | + to their pvlib names. For most variables, only the first |
| 66 | + three numbers are used, the fourth indicating the instrument. |
| 67 | + Spectral data (7xxx) uses all four numbers to indicate the |
| 68 | + variable. |
| 69 | + """ |
| 70 | + var_map = { |
| 71 | + '100': 'ghi', |
| 72 | + '201': 'dni', |
| 73 | + '300': 'dhi', |
| 74 | + '930': 'temp_air', |
| 75 | + '931': 'temp_dew', |
| 76 | + '933': 'relative_humidity', |
| 77 | + '921': 'wind_speed', |
| 78 | + '920': 'wind_dir', |
| 79 | + } |
| 80 | + if col.startswith('7'): |
| 81 | + # spectral data |
| 82 | + try: |
| 83 | + return var_map[col] |
| 84 | + except KeyError: |
| 85 | + return col |
| 86 | + try: |
| 87 | + return var_map[col[:3]]+'_'+col[3:] |
| 88 | + except KeyError: |
| 89 | + return col |
| 90 | + |
| 91 | + |
| 92 | +def format_index(df, year): |
| 93 | + """ Create a datetime index from day of year, and time columns. |
| 94 | +
|
| 95 | + Parameters |
| 96 | + ---------- |
| 97 | + df: pd.Dataframe |
| 98 | + The srml data to reindex. |
| 99 | + year: int |
| 100 | + The year of the file |
| 101 | +
|
| 102 | + Returns |
| 103 | + ------- |
| 104 | + df: pd.Dataframe |
| 105 | + The Dataframe with a datetime index applied. |
| 106 | + """ |
| 107 | + df_time = df[df.columns[1]] - 1 |
| 108 | + df_doy = df[df.columns[0]] |
| 109 | + hours = df_time % 100 == 99 |
| 110 | + times = df_time.where(~hours, df_time - 40) |
| 111 | + times = times.apply(lambda x: '{:04.0f}'.format(x)) |
| 112 | + doy = df_doy.apply(lambda x: '{:03.0f}'.format(x)) |
| 113 | + dts = pd.to_datetime(str(year) + '-' + doy + '-' + times, |
| 114 | + format='%Y-%j-%H%M') |
| 115 | + df.index = dts |
| 116 | + df = df.tz_localize('Etc/GMT+8') |
| 117 | + return df |
| 118 | + |
| 119 | + |
| 120 | +def request_uo_data(station, year, month, filetype='PO'): |
| 121 | + """Read a month of SRML data from solardat into a Dataframe. |
| 122 | +
|
| 123 | + Parameters |
| 124 | + ---------- |
| 125 | + station: str |
| 126 | + The name of the SRML station to request. |
| 127 | + year: int |
| 128 | + Year to request data for |
| 129 | + month: int |
| 130 | + Month to request data for. |
| 131 | + filetype: string |
| 132 | + SRML file type to gather. 'RO' and 'PO' are the |
| 133 | + only minute resolution files. |
| 134 | + Returns |
| 135 | + ------- |
| 136 | + data: pd.DataFrame |
| 137 | + One month of data from SRML. |
| 138 | + """ |
| 139 | + file_name = "{station}{filetype}{year:2d}{month:2d}.txt".format( |
| 140 | + station=station, |
| 141 | + filetype=filetype, |
| 142 | + year=year % 100, |
| 143 | + month=month) |
| 144 | + url = "http://solardat.uoregon.edu/download/Archive/" |
| 145 | + data = read_srml(url+file_name) |
| 146 | + return data |
0 commit comments