diff --git a/doc/python/bio-alignment-chart.md b/doc/python/bio-alignment-chart.md index 5ab71618bab..25789fe17dc 100644 --- a/doc/python/bio-alignment-chart.md +++ b/doc/python/bio-alignment-chart.md @@ -29,10 +29,10 @@ jupyter: order: 1 page_type: u-guide permalink: python/alignment-chart/ - thumbnail: thumbnail/alignment-chart.png + thumbnail: thumbnail/alignment_chart.png --- -## Alignment Viewer (link to dash alignment section below) +## Alignment Viewer The Alignment Viewer (MSA) component is used to align multiple genomic or proteomic sequences from a FASTA or Clustal file. Among its extensive set of features, the multiple sequence alignment viewer can display multiple subplots showing gap and conservation info, alongside industry standard colorscale support and consensus sequence. No matter what size your alignment is, Alignment Viewer is able to display your genes or proteins snappily thanks to the underlying WebGL architecture powering the component. You can quickly scroll through your long sequence with a slider or a heatmap overview. diff --git a/doc/python/bio-manhattanplot.md b/doc/python/bio-manhattanplot.md index 3da262735ca..0394e43b7c3 100644 --- a/doc/python/bio-manhattanplot.md +++ b/doc/python/bio-manhattanplot.md @@ -29,8 +29,8 @@ jupyter: name: Manhattan Plot order: 1 page_type: u-guide - permalink: python/manhattan-plot/ - thumbnail: thumbnail/manhttan-plot.png + permalink: python/manhattan-plot/ + thumbnail: thumbnail/manhattan_plot.png --- ## Manhattan Plot diff --git a/doc/python/bio-volcano-plot.md b/doc/python/bio-volcano-plot.md index 497d7e3307d..d3c4b8a1c16 100644 --- a/doc/python/bio-volcano-plot.md +++ b/doc/python/bio-volcano-plot.md @@ -30,7 +30,7 @@ jupyter: order: 1 page_type: u-guide permalink: python/volcano-plot/ - thumbnail: thumbnail/volcano-plot.png + thumbnail: thumbnail/volcano_plot.png --- ## VolcanoPlot @@ -38,7 +38,7 @@ Volcano Plot interactively identifies clinically meaningful markers in genomic e ```python import pandas as pd -import dash_bio +import dash_bio df = pd.read_csv(