diff --git a/doc/python/box-plots.md b/doc/python/box-plots.md index 659863faed5..6733f53e2d4 100644 --- a/doc/python/box-plots.md +++ b/doc/python/box-plots.md @@ -6,7 +6,7 @@ jupyter: extension: .md format_name: markdown format_version: '1.2' - jupytext_version: 1.3.1 + jupytext_version: 1.6.0 kernelspec: display_name: Python 3 language: python @@ -20,7 +20,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.6.8 + version: 3.7.6 plotly: description: How to make Box Plots in Python with Plotly. display_as: statistical @@ -60,6 +60,18 @@ fig = px.box(df, x="time", y="total_bill") fig.show() ``` +### Box Plots in Dash + +[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. + +Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with Dash Enterprise.** + +```python hide_code=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'box-plots', width='100%', height=630) +``` + ### Display the underlying data With the `points` argument, display underlying data points with either all points (`all`), outliers only (`outliers`, default), or none of them (`False`). diff --git a/doc/python/choropleth-maps.md b/doc/python/choropleth-maps.md index 4e848ef009e..3245533cf2f 100644 --- a/doc/python/choropleth-maps.md +++ b/doc/python/choropleth-maps.md @@ -6,7 +6,7 @@ jupyter: extension: .md format_name: markdown format_version: '1.2' - jupytext_version: 1.4.2 + jupytext_version: 1.6.0 kernelspec: display_name: Python 3 language: python @@ -20,7 +20,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.7.7 + version: 3.7.6 plotly: description: How to make choropleth maps in Python with Plotly. display_as: maps @@ -143,6 +143,18 @@ fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0}) fig.show() ``` +### Choropleth maps in Dash + +[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. + +Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with Dash Enterprise.** + +```python hide_code=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'choropleth-maps', width='100%', height=630) +``` + ### Discrete Colors In addition to [continuous colors](/python/colorscales/), we can [discretely-color](/python/discrete-color/) our choropleth maps by setting `color` to a non-numerical column, like the name of the winner of an election. diff --git a/doc/python/discrete-color.md b/doc/python/discrete-color.md index 90cb4911d60..dfae44ed96a 100644 --- a/doc/python/discrete-color.md +++ b/doc/python/discrete-color.md @@ -101,11 +101,9 @@ fig.show() ### Discrete Colors in Dash -[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. With Dash, you can add radio buttons to control the color mode of your graph. +[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. -To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. - -Get started now with [the official docs](https://dash.plotly.com/installation) and learn how you can effortlessly [style](https://plotly.com/dash/design-kit/) and [deploy](https://plotly.com/dash/app-manager/) apps like this with [Dash Enterprise](https://plotly.com/dash/). +Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with Dash Enterprise.** ```python hide_code=true from IPython.display import IFrame diff --git a/doc/python/hover-text-and-formatting.md b/doc/python/hover-text-and-formatting.md index c656248a5e3..b4db3b96c28 100644 --- a/doc/python/hover-text-and-formatting.md +++ b/doc/python/hover-text-and-formatting.md @@ -6,7 +6,7 @@ jupyter: extension: .md format_name: markdown format_version: '1.2' - jupytext_version: 1.4.2 + jupytext_version: 1.6.0 kernelspec: display_name: Python 3 language: python @@ -20,7 +20,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.7.7 + version: 3.7.6 plotly: description: How to use hover text and formatting in Python with Plotly. display_as: file_settings @@ -83,6 +83,20 @@ fig.update_layout(hovermode="x unified") fig.show() ``` +#### Control hovermode with Dash + +[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. + +Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with Dash Enterprise.** + +Change the hovermode below and try hovering over the points: + +```python hide_code=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'hover-text-and-formatting', width='100%', height=630) +``` + #### Selecting a hovermode in a figure created with `plotly.graph_objects` The hovermode is a property of the figure layout, so you can select a hovermode no matter how you created the figure, either with `plotly.express` or with `plotly.graph_objects`. Below is an example with a figure created with `plotly.graph_objects`. If you're not familiar with the structure of plotly figures, you can read [the tutorial on creating and updating plotly figures](/python/creating-and-updating-figures/). diff --git a/doc/python/pie-charts.md b/doc/python/pie-charts.md index 1899fe7be31..e202036e687 100644 --- a/doc/python/pie-charts.md +++ b/doc/python/pie-charts.md @@ -6,7 +6,7 @@ jupyter: extension: .md format_name: markdown format_version: '1.2' - jupytext_version: 1.3.0 + jupytext_version: 1.6.0 kernelspec: display_name: Python 3 language: python @@ -20,7 +20,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.7.3 + version: 3.7.6 plotly: description: How to make Pie Charts. display_as: basic @@ -64,6 +64,18 @@ fig = px.pie(df, values='tip', names='day') fig.show() ``` +### Pie chart in Dash + +[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. + +Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with Dash Enterprise.** + +```python hide_code=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'pie-charts', width='100%', height=630) +``` + ### Setting the color of pie sectors with px.pie ```python @@ -304,4 +316,4 @@ fig.show() #### Reference -See https://plotly.com/python/reference/pie/ for more information and chart attribute options! \ No newline at end of file +See https://plotly.com/python/reference/pie/ for more information and chart attribute options!