diff --git a/.gitignore b/.gitignore
index 92d80f1c610d..17603800dfdc 100755
--- a/.gitignore
+++ b/.gitignore
@@ -23,4 +23,4 @@ _posts/python/fundamentals/static-image/images
_config_personal.yml
_posts/python/html
.Rproj.user
-documentation.Rproj
+documentation.Rproj
\ No newline at end of file
diff --git a/_posts/ggplot2/2016-11-29-geom_boxplot.Rmd b/_posts/ggplot2/2016-11-29-geom_boxplot.Rmd
index 865cfbbcf139..16f3a1646637 100644
--- a/_posts/ggplot2/2016-11-29-geom_boxplot.Rmd
+++ b/_posts/ggplot2/2016-11-29-geom_boxplot.Rmd
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 1
+order: 2
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2016-11-29-geom_boxplot.md b/_posts/ggplot2/2016-11-29-geom_boxplot.md
index 3af64fb32685..47e477e78b87 100644
--- a/_posts/ggplot2/2016-11-29-geom_boxplot.md
+++ b/_posts/ggplot2/2016-11-29-geom_boxplot.md
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 1
+order: 2
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2016-11-29-geom_ribbon.Rmd b/_posts/ggplot2/2016-11-29-geom_ribbon.Rmd
index 95b526261801..cb1f4d3ea49d 100644
--- a/_posts/ggplot2/2016-11-29-geom_ribbon.Rmd
+++ b/_posts/ggplot2/2016-11-29-geom_ribbon.Rmd
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 4
+order: 5
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2016-11-29-geom_ribbon.md b/_posts/ggplot2/2016-11-29-geom_ribbon.md
index 0ea120eca678..92239904c46d 100644
--- a/_posts/ggplot2/2016-11-29-geom_ribbon.md
+++ b/_posts/ggplot2/2016-11-29-geom_ribbon.md
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 4
+order: 5
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2016-11-29-geom_smooth.Rmd b/_posts/ggplot2/2016-11-29-geom_smooth.Rmd
index 4f442a1c8410..6880b8344d69 100644
--- a/_posts/ggplot2/2016-11-29-geom_smooth.Rmd
+++ b/_posts/ggplot2/2016-11-29-geom_smooth.Rmd
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 5
+order: 6
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2016-11-29-geom_smooth.md b/_posts/ggplot2/2016-11-29-geom_smooth.md
index 5f48fe8ad737..a560b21fd79e 100644
--- a/_posts/ggplot2/2016-11-29-geom_smooth.md
+++ b/_posts/ggplot2/2016-11-29-geom_smooth.md
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 5
+order: 6
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2016-11-29-stat_smooth.Rmd b/_posts/ggplot2/2016-11-29-stat_smooth.Rmd
index 115de156b259..5d831a1abe21 100644
--- a/_posts/ggplot2/2016-11-29-stat_smooth.Rmd
+++ b/_posts/ggplot2/2016-11-29-stat_smooth.Rmd
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 5
+order: 7
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2016-11-29-stat_smooth.md b/_posts/ggplot2/2016-11-29-stat_smooth.md
index f1fa64da3ba9..cfca776c432d 100644
--- a/_posts/ggplot2/2016-11-29-stat_smooth.md
+++ b/_posts/ggplot2/2016-11-29-stat_smooth.md
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 5
+order: 7
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2017-04-21-geom_quantile.Rmd b/_posts/ggplot2/2017-04-21-geom_quantile.Rmd
index 0d8d1a37815b..cf26ec2ea2f0 100644
--- a/_posts/ggplot2/2017-04-21-geom_quantile.Rmd
+++ b/_posts/ggplot2/2017-04-21-geom_quantile.Rmd
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 6
+order: 4
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2017-04-21-geom_quantile.md b/_posts/ggplot2/2017-04-21-geom_quantile.md
index 6919c3873495..42d04a9206e1 100644
--- a/_posts/ggplot2/2017-04-21-geom_quantile.md
+++ b/_posts/ggplot2/2017-04-21-geom_quantile.md
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 6
+order: 4
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2019-07-12-geom_bin2d.Rmd b/_posts/ggplot2/2019-07-12-geom_bin2d.Rmd
index f1eaf9c282f9..af1fc45e258d 100644
--- a/_posts/ggplot2/2019-07-12-geom_bin2d.Rmd
+++ b/_posts/ggplot2/2019-07-12-geom_bin2d.Rmd
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 2
+order: 1
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2019-07-12-geom_bin2d.md b/_posts/ggplot2/2019-07-12-geom_bin2d.md
index 8d9424d07cc2..813494029e62 100644
--- a/_posts/ggplot2/2019-07-12-geom_bin2d.md
+++ b/_posts/ggplot2/2019-07-12-geom_bin2d.md
@@ -9,7 +9,7 @@ language: ggplot2
page_type: example_index
has_thumbnail: true
display_as: statistical
-order: 2
+order: 1
output:
html_document:
keep_md: true
diff --git a/_posts/ggplot2/2019-08-02-geom_violin.Rmd b/_posts/ggplot2/2019-08-02-geom_violin.Rmd
new file mode 100644
index 000000000000..4337560ca658
--- /dev/null
+++ b/_posts/ggplot2/2019-08-02-geom_violin.Rmd
@@ -0,0 +1,193 @@
+---
+title: geom_violin | Examples | Plotly
+name: geom_violin
+permalink: ggplot2/geom_violin/
+description: How to make a density map using geom_violin. Includes explanations on flipping axes and facetting.
+layout: base
+thumbnail: thumbnail/geom_violin.jpg
+language: ggplot2
+page_type: example_index
+has_thumbnail: true
+display_as: statistical
+order: 8
+output:
+ html_document:
+ keep_md: true
+---
+
+```{r, echo = FALSE, message=FALSE}
+knitr::opts_chunk$set(message = FALSE, warning=FALSE)
+Sys.setenv("plotly_username"="RPlotBot")
+Sys.setenv("plotly_api_key"="q0lz6r5efr")
+```
+
+### New to Plotly?
+
+Plotly's R library is free and open source!
+[Get started](https://plot.ly/r/getting-started/) by downloading the client and [reading the primer](https://plot.ly/r/getting-started/).
+You can set up Plotly to work in [online](https://plot.ly/r/getting-started/#hosting-graphs-in-your-online-plotly-account) or [offline](https://plot.ly/r/offline/) mode.
+We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/r_cheat_sheet.pdf) (new!) to help you get started!
+
+### Version Check
+
+Version 4 of Plotly's R package is now [available](https://plot.ly/r/getting-started/#installation)!
+Check out [this post](http://moderndata.plot.ly/upgrading-to-plotly-4-0-and-above/) for more information on breaking changes and new features available in this version.
+
+```{r}
+library(plotly)
+packageVersion('plotly')
+```
+
+### Basic violin plot
+A basic violin plot showing how Democratic vote share in the 2018 elections to the US House of Representatives varied by level of density. A horizontal bar is added, to divide candidates who lost from those who won.
+
+Source: [Dave Wassermann and Ally Flinn](https://docs.google.com/spreadsheets/d/1WxDaxD5az6kdOjJncmGph37z0BPNhV1fNAH_g7IkpC0/htmlview?sle=true#gid=0) for the election results and CityLab for its [Congressional Density Index](https://github.com/theatlantic/citylab-data/tree/master/citylab-congress). Regional classifications are according to the Census Bureau.
+
+```{r, results='hide'}
+library(plotly)
+district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
+district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
+district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
+
+p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
+ geom_violin(colour=NA) +
+ geom_hline(yintercept=0, alpha=0.5) +
+ labs(title = "Democratic performance in the 2018 House elections, by region and density",
+ x = "Density Index\nfrom CityLab",
+ y = "Margin of Victory/Defeat")
+ggplotly(p)
+
+# Create a shareable link to your chart
+# Set up API credentials: https://plot.ly/r/getting-started
+chart_link = api_create(p, filename="geom_violin/basic-graph")
+chart_link
+```
+
+```{r echo=FALSE}
+chart_link
+```
+
+### Flipping the Axes
+With geom\_violin(), the y-axis must always be the continuous variable, and the x-axis the categorical variable. To create horizontal violin graphs, keep the x- and y-variables as is and add coord\_flip().
+
+```{r, results='hide'}
+library(plotly)
+district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
+district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
+district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
+
+p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
+ geom_violin(colour=NA) +
+ geom_hline(yintercept=0, alpha=0.5) +
+ labs(title = "Democratic performance in the 2018 House elections, by region and density",
+ x = "Density Index\nfrom CityLab",
+ y = "Margin of Victory/Defeat") +
+ coord_flip()
+ggplotly(p)
+
+# Create a shareable link to your chart
+# Set up API credentials: https://plot.ly/r/getting-started
+chart_link = api_create(p, filename="geom_violin/flip-axes")
+chart_link
+```
+
+```{r echo=FALSE}
+chart_link
+```
+
+### Add facetting
+Including facetting by region.
+
+```{r, results='hide'}
+library(plotly)
+district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
+district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
+district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
+
+p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
+ geom_violin(colour=NA) +
+ geom_hline(yintercept=0, alpha=0.5) +
+ facet_wrap(~region) +
+ labs(title = "Democratic performance in the 2018 House elections, by region and density",
+ x = "Density Index\nfrom CityLab",
+ y = "Margin of Victory/Defeat") +
+ coord_flip()
+ggplotly(p)
+
+# Create a shareable link to your chart
+# Set up API credentials: https://plot.ly/r/getting-started
+chart_link = api_create(p, filename="geom_violin/add-facet")
+chart_link
+```
+
+```{r echo=FALSE}
+chart_link
+```
+
+### Customized Appearance
+Add colour to the facet titles, centre-align the title, rotate the y-axis title, change the font, and get rid of the unnecessary legend. Note that coord_flip() flips the axes for the variables and the titles, but does not flip theme() elements.
+
+```{r, results='hide'}
+library(plotly)
+district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
+district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
+district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
+
+p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
+ geom_violin(colour=NA) +
+ geom_hline(yintercept=0, alpha=0.5) +
+ facet_wrap(~region) +
+ labs(title = "Democratic performance in the 2018 House elections, by region and density",
+ x = "Density Index\nfrom CityLab",
+ y = "Margin of Victory/Defeat") +
+ coord_flip() +
+ theme(axis.title.y = element_text(angle = 0, vjust=0.5),
+ plot.title = element_text(hjust = 0.5),
+ strip.background = element_rect(fill="lightblue"),
+ text = element_text(family = 'Fira Sans'),
+ legend.position = "none")
+ggplotly(p)
+
+# Create a shareable link to your chart
+# Set up API credentials: https://plot.ly/r/getting-started
+chart_link = api_create(p, filename="geom_violin/customize-theme")
+chart_link
+```
+
+```{r echo=FALSE}
+chart_link
+```
+
+### Rotated Axis Text
+Rotated the x-axis text 45 degrees, and used facet\_grid to create a 4x1 facet (compared to facet\_wrap, which defaults to 2x2).
+
+```{r, results='hide'}
+library(plotly)
+district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
+district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
+district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
+
+p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
+ geom_violin(colour=NA) +
+ geom_hline(yintercept=0, alpha=0.5) +
+ facet_grid(.~region) +
+ labs(title = "Democratic performance in the 2018 House elections, by region and density",
+ x = "Density Index\nfrom CityLab",
+ y = "Margin of Victory/Defeat") +
+ theme(axis.text.x = element_text(angle = -45),
+ plot.title = element_text(hjust = 0.5),
+ strip.background = element_rect(fill="lightblue"),
+ text = element_text(family = 'Fira Sans'),
+ legend.position = "none")
+ggplotly(p)
+
+# Create a shareable link to your chart
+# Set up API credentials: https://plot.ly/r/getting-started
+chart_link = api_create(p, filename="geom_violin/rotated-text")
+chart_link
+```
+
+```{r echo=FALSE}
+chart_link
+```
+
diff --git a/_posts/ggplot2/2019-08-02-geom_violin.md b/_posts/ggplot2/2019-08-02-geom_violin.md
new file mode 100644
index 000000000000..18b3599474b1
--- /dev/null
+++ b/_posts/ggplot2/2019-08-02-geom_violin.md
@@ -0,0 +1,189 @@
+---
+title: geom_violin | Examples | Plotly
+name: geom_violin
+permalink: ggplot2/geom_violin/
+description: How to make a density map using geom_violin. Includes explanations on flipping axes and facetting.
+layout: base
+thumbnail: thumbnail/geom_violin.jpg
+language: ggplot2
+page_type: example_index
+has_thumbnail: true
+display_as: statistical
+order: 8
+output:
+ html_document:
+ keep_md: true
+---
+
+
+
+### New to Plotly?
+
+Plotly's R library is free and open source!
+[Get started](https://plot.ly/r/getting-started/) by downloading the client and [reading the primer](https://plot.ly/r/getting-started/).
+You can set up Plotly to work in [online](https://plot.ly/r/getting-started/#hosting-graphs-in-your-online-plotly-account) or [offline](https://plot.ly/r/offline/) mode.
+We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/r_cheat_sheet.pdf) (new!) to help you get started!
+
+### Version Check
+
+Version 4 of Plotly's R package is now [available](https://plot.ly/r/getting-started/#installation)!
+Check out [this post](http://moderndata.plot.ly/upgrading-to-plotly-4-0-and-above/) for more information on breaking changes and new features available in this version.
+
+
+```r
+library(plotly)
+packageVersion('plotly')
+```
+
+```
+## [1] '4.9.0.9000'
+```
+
+### Basic violin plot
+A basic violin plot showing how Democratic vote share in the 2018 elections to the US House of Representatives varied by level of density. A horizontal bar is added, to divide candidates who lost from those who won.
+
+Source: [Dave Wassermann and Ally Flinn](https://docs.google.com/spreadsheets/d/1WxDaxD5az6kdOjJncmGph37z0BPNhV1fNAH_g7IkpC0/htmlview?sle=true#gid=0) for the election results and CityLab for its [Congressional Density Index](https://github.com/theatlantic/citylab-data/tree/master/citylab-congress). Regional classifications are according to the Census Bureau.
+
+
+```r
+library(plotly)
+district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
+district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
+district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
+
+p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
+ geom_violin(colour=NA) +
+ geom_hline(yintercept=0, alpha=0.5) +
+ labs(title = "Democratic performance in the 2018 House elections, by region and density",
+ x = "Density Index\nfrom CityLab",
+ y = "Margin of Victory/Defeat")
+ggplotly(p)
+
+# Create a shareable link to your chart
+# Set up API credentials: https://plot.ly/r/getting-started
+chart_link = api_create(p, filename="geom_violin/basic-graph")
+chart_link
+```
+
+
+
+### Flipping the Axes
+With geom\_violin(), the y-axis must always be the continuous variable, and the x-axis the categorical variable. To create horizontal violin graphs, keep the x- and y-variables as is and add coord\_flip().
+
+
+```r
+library(plotly)
+district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
+district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
+district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
+
+p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
+ geom_violin(colour=NA) +
+ geom_hline(yintercept=0, alpha=0.5) +
+ labs(title = "Democratic performance in the 2018 House elections, by region and density",
+ x = "Density Index\nfrom CityLab",
+ y = "Margin of Victory/Defeat") +
+ coord_flip()
+ggplotly(p)
+
+# Create a shareable link to your chart
+# Set up API credentials: https://plot.ly/r/getting-started
+chart_link = api_create(p, filename="geom_violin/flip-axes")
+chart_link
+```
+
+
+
+### Add facetting
+Including facetting by region.
+
+
+```r
+library(plotly)
+district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
+district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
+district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
+
+p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
+ geom_violin(colour=NA) +
+ geom_hline(yintercept=0, alpha=0.5) +
+ facet_wrap(~region) +
+ labs(title = "Democratic performance in the 2018 House elections, by region and density",
+ x = "Density Index\nfrom CityLab",
+ y = "Margin of Victory/Defeat") +
+ coord_flip()
+ggplotly(p)
+
+# Create a shareable link to your chart
+# Set up API credentials: https://plot.ly/r/getting-started
+chart_link = api_create(p, filename="geom_violin/add-facet")
+chart_link
+```
+
+
+
+### Customized Appearance
+Add colour to the facet titles, centre-align the title, rotate the y-axis title, change the font, and get rid of the unnecessary legend. Note that coord_flip() flips the axes for the variables and the titles, but does not flip theme() elements.
+
+
+```r
+library(plotly)
+district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
+district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
+district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
+
+p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
+ geom_violin(colour=NA) +
+ geom_hline(yintercept=0, alpha=0.5) +
+ facet_wrap(~region) +
+ labs(title = "Democratic performance in the 2018 House elections, by region and density",
+ x = "Density Index\nfrom CityLab",
+ y = "Margin of Victory/Defeat") +
+ coord_flip() +
+ theme(axis.title.y = element_text(angle = 0, vjust=0.5),
+ plot.title = element_text(hjust = 0.5),
+ strip.background = element_rect(fill="lightblue"),
+ text = element_text(family = 'Fira Sans'),
+ legend.position = "none")
+ggplotly(p)
+
+# Create a shareable link to your chart
+# Set up API credentials: https://plot.ly/r/getting-started
+chart_link = api_create(p, filename="geom_violin/customize-theme")
+chart_link
+```
+
+
+
+### Rotated Axis Text
+Rotated the x-axis text 45 degrees, and used facet\_grid to create a 4x1 facet (compared to facet\_wrap, which defaults to 2x2).
+
+
+```r
+library(plotly)
+district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE)
+district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural"))
+district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast"))
+
+p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) +
+ geom_violin(colour=NA) +
+ geom_hline(yintercept=0, alpha=0.5) +
+ facet_grid(.~region) +
+ labs(title = "Democratic performance in the 2018 House elections, by region and density",
+ x = "Density Index\nfrom CityLab",
+ y = "Margin of Victory/Defeat") +
+ theme(axis.text.x = element_text(angle = -45),
+ plot.title = element_text(hjust = 0.5),
+ strip.background = element_rect(fill="lightblue"),
+ text = element_text(family = 'Fira Sans'),
+ legend.position = "none")
+ggplotly(p)
+
+# Create a shareable link to your chart
+# Set up API credentials: https://plot.ly/r/getting-started
+chart_link = api_create(p, filename="geom_violin/rotated-text")
+chart_link
+```
+
+
+