diff --git a/.gitignore b/.gitignore index 92d80f1c610d..17603800dfdc 100755 --- a/.gitignore +++ b/.gitignore @@ -23,4 +23,4 @@ _posts/python/fundamentals/static-image/images _config_personal.yml _posts/python/html .Rproj.user -documentation.Rproj +documentation.Rproj \ No newline at end of file diff --git a/_posts/ggplot2/2016-11-29-geom_boxplot.Rmd b/_posts/ggplot2/2016-11-29-geom_boxplot.Rmd index 865cfbbcf139..16f3a1646637 100644 --- a/_posts/ggplot2/2016-11-29-geom_boxplot.Rmd +++ b/_posts/ggplot2/2016-11-29-geom_boxplot.Rmd @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 1 +order: 2 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2016-11-29-geom_boxplot.md b/_posts/ggplot2/2016-11-29-geom_boxplot.md index 3af64fb32685..47e477e78b87 100644 --- a/_posts/ggplot2/2016-11-29-geom_boxplot.md +++ b/_posts/ggplot2/2016-11-29-geom_boxplot.md @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 1 +order: 2 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2016-11-29-geom_ribbon.Rmd b/_posts/ggplot2/2016-11-29-geom_ribbon.Rmd index 95b526261801..cb1f4d3ea49d 100644 --- a/_posts/ggplot2/2016-11-29-geom_ribbon.Rmd +++ b/_posts/ggplot2/2016-11-29-geom_ribbon.Rmd @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 4 +order: 5 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2016-11-29-geom_ribbon.md b/_posts/ggplot2/2016-11-29-geom_ribbon.md index 0ea120eca678..92239904c46d 100644 --- a/_posts/ggplot2/2016-11-29-geom_ribbon.md +++ b/_posts/ggplot2/2016-11-29-geom_ribbon.md @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 4 +order: 5 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2016-11-29-geom_smooth.Rmd b/_posts/ggplot2/2016-11-29-geom_smooth.Rmd index 4f442a1c8410..6880b8344d69 100644 --- a/_posts/ggplot2/2016-11-29-geom_smooth.Rmd +++ b/_posts/ggplot2/2016-11-29-geom_smooth.Rmd @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 5 +order: 6 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2016-11-29-geom_smooth.md b/_posts/ggplot2/2016-11-29-geom_smooth.md index 5f48fe8ad737..a560b21fd79e 100644 --- a/_posts/ggplot2/2016-11-29-geom_smooth.md +++ b/_posts/ggplot2/2016-11-29-geom_smooth.md @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 5 +order: 6 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2016-11-29-stat_smooth.Rmd b/_posts/ggplot2/2016-11-29-stat_smooth.Rmd index 115de156b259..5d831a1abe21 100644 --- a/_posts/ggplot2/2016-11-29-stat_smooth.Rmd +++ b/_posts/ggplot2/2016-11-29-stat_smooth.Rmd @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 5 +order: 7 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2016-11-29-stat_smooth.md b/_posts/ggplot2/2016-11-29-stat_smooth.md index f1fa64da3ba9..cfca776c432d 100644 --- a/_posts/ggplot2/2016-11-29-stat_smooth.md +++ b/_posts/ggplot2/2016-11-29-stat_smooth.md @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 5 +order: 7 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2017-04-21-geom_quantile.Rmd b/_posts/ggplot2/2017-04-21-geom_quantile.Rmd index 0d8d1a37815b..cf26ec2ea2f0 100644 --- a/_posts/ggplot2/2017-04-21-geom_quantile.Rmd +++ b/_posts/ggplot2/2017-04-21-geom_quantile.Rmd @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 6 +order: 4 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2017-04-21-geom_quantile.md b/_posts/ggplot2/2017-04-21-geom_quantile.md index 6919c3873495..42d04a9206e1 100644 --- a/_posts/ggplot2/2017-04-21-geom_quantile.md +++ b/_posts/ggplot2/2017-04-21-geom_quantile.md @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 6 +order: 4 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2019-07-12-geom_bin2d.Rmd b/_posts/ggplot2/2019-07-12-geom_bin2d.Rmd index f1eaf9c282f9..af1fc45e258d 100644 --- a/_posts/ggplot2/2019-07-12-geom_bin2d.Rmd +++ b/_posts/ggplot2/2019-07-12-geom_bin2d.Rmd @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 2 +order: 1 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2019-07-12-geom_bin2d.md b/_posts/ggplot2/2019-07-12-geom_bin2d.md index 8d9424d07cc2..813494029e62 100644 --- a/_posts/ggplot2/2019-07-12-geom_bin2d.md +++ b/_posts/ggplot2/2019-07-12-geom_bin2d.md @@ -9,7 +9,7 @@ language: ggplot2 page_type: example_index has_thumbnail: true display_as: statistical -order: 2 +order: 1 output: html_document: keep_md: true diff --git a/_posts/ggplot2/2019-08-02-geom_violin.Rmd b/_posts/ggplot2/2019-08-02-geom_violin.Rmd new file mode 100644 index 000000000000..4337560ca658 --- /dev/null +++ b/_posts/ggplot2/2019-08-02-geom_violin.Rmd @@ -0,0 +1,193 @@ +--- +title: geom_violin | Examples | Plotly +name: geom_violin +permalink: ggplot2/geom_violin/ +description: How to make a density map using geom_violin. Includes explanations on flipping axes and facetting. +layout: base +thumbnail: thumbnail/geom_violin.jpg +language: ggplot2 +page_type: example_index +has_thumbnail: true +display_as: statistical +order: 8 +output: + html_document: + keep_md: true +--- + +```{r, echo = FALSE, message=FALSE} +knitr::opts_chunk$set(message = FALSE, warning=FALSE) +Sys.setenv("plotly_username"="RPlotBot") +Sys.setenv("plotly_api_key"="q0lz6r5efr") +``` + +### New to Plotly? + +Plotly's R library is free and open source!
+[Get started](https://plot.ly/r/getting-started/) by downloading the client and [reading the primer](https://plot.ly/r/getting-started/).
+You can set up Plotly to work in [online](https://plot.ly/r/getting-started/#hosting-graphs-in-your-online-plotly-account) or [offline](https://plot.ly/r/offline/) mode.
+We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/r_cheat_sheet.pdf) (new!) to help you get started! + +### Version Check + +Version 4 of Plotly's R package is now [available](https://plot.ly/r/getting-started/#installation)!
+Check out [this post](http://moderndata.plot.ly/upgrading-to-plotly-4-0-and-above/) for more information on breaking changes and new features available in this version. + +```{r} +library(plotly) +packageVersion('plotly') +``` + +### Basic violin plot +A basic violin plot showing how Democratic vote share in the 2018 elections to the US House of Representatives varied by level of density. A horizontal bar is added, to divide candidates who lost from those who won. + +Source: [Dave Wassermann and Ally Flinn](https://docs.google.com/spreadsheets/d/1WxDaxD5az6kdOjJncmGph37z0BPNhV1fNAH_g7IkpC0/htmlview?sle=true#gid=0) for the election results and CityLab for its [Congressional Density Index](https://github.com/theatlantic/citylab-data/tree/master/citylab-congress). Regional classifications are according to the Census Bureau. + +```{r, results='hide'} +library(plotly) +district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE) +district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural")) +district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast")) + +p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) + + geom_violin(colour=NA) + + geom_hline(yintercept=0, alpha=0.5) + + labs(title = "Democratic performance in the 2018 House elections, by region and density", + x = "Density Index\nfrom CityLab", + y = "Margin of Victory/Defeat") +ggplotly(p) + +# Create a shareable link to your chart +# Set up API credentials: https://plot.ly/r/getting-started +chart_link = api_create(p, filename="geom_violin/basic-graph") +chart_link +``` + +```{r echo=FALSE} +chart_link +``` + +### Flipping the Axes +With geom\_violin(), the y-axis must always be the continuous variable, and the x-axis the categorical variable. To create horizontal violin graphs, keep the x- and y-variables as is and add coord\_flip(). + +```{r, results='hide'} +library(plotly) +district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE) +district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural")) +district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast")) + +p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) + + geom_violin(colour=NA) + + geom_hline(yintercept=0, alpha=0.5) + + labs(title = "Democratic performance in the 2018 House elections, by region and density", + x = "Density Index\nfrom CityLab", + y = "Margin of Victory/Defeat") + + coord_flip() +ggplotly(p) + +# Create a shareable link to your chart +# Set up API credentials: https://plot.ly/r/getting-started +chart_link = api_create(p, filename="geom_violin/flip-axes") +chart_link +``` + +```{r echo=FALSE} +chart_link +``` + +### Add facetting +Including facetting by region. + +```{r, results='hide'} +library(plotly) +district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE) +district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural")) +district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast")) + +p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) + + geom_violin(colour=NA) + + geom_hline(yintercept=0, alpha=0.5) + + facet_wrap(~region) + + labs(title = "Democratic performance in the 2018 House elections, by region and density", + x = "Density Index\nfrom CityLab", + y = "Margin of Victory/Defeat") + + coord_flip() +ggplotly(p) + +# Create a shareable link to your chart +# Set up API credentials: https://plot.ly/r/getting-started +chart_link = api_create(p, filename="geom_violin/add-facet") +chart_link +``` + +```{r echo=FALSE} +chart_link +``` + +### Customized Appearance +Add colour to the facet titles, centre-align the title, rotate the y-axis title, change the font, and get rid of the unnecessary legend. Note that coord_flip() flips the axes for the variables and the titles, but does not flip theme() elements. + +```{r, results='hide'} +library(plotly) +district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE) +district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural")) +district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast")) + +p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) + + geom_violin(colour=NA) + + geom_hline(yintercept=0, alpha=0.5) + + facet_wrap(~region) + + labs(title = "Democratic performance in the 2018 House elections, by region and density", + x = "Density Index\nfrom CityLab", + y = "Margin of Victory/Defeat") + + coord_flip() + + theme(axis.title.y = element_text(angle = 0, vjust=0.5), + plot.title = element_text(hjust = 0.5), + strip.background = element_rect(fill="lightblue"), + text = element_text(family = 'Fira Sans'), + legend.position = "none") +ggplotly(p) + +# Create a shareable link to your chart +# Set up API credentials: https://plot.ly/r/getting-started +chart_link = api_create(p, filename="geom_violin/customize-theme") +chart_link +``` + +```{r echo=FALSE} +chart_link +``` + +### Rotated Axis Text +Rotated the x-axis text 45 degrees, and used facet\_grid to create a 4x1 facet (compared to facet\_wrap, which defaults to 2x2). + +```{r, results='hide'} +library(plotly) +district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE) +district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural")) +district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast")) + +p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) + + geom_violin(colour=NA) + + geom_hline(yintercept=0, alpha=0.5) + + facet_grid(.~region) + + labs(title = "Democratic performance in the 2018 House elections, by region and density", + x = "Density Index\nfrom CityLab", + y = "Margin of Victory/Defeat") + + theme(axis.text.x = element_text(angle = -45), + plot.title = element_text(hjust = 0.5), + strip.background = element_rect(fill="lightblue"), + text = element_text(family = 'Fira Sans'), + legend.position = "none") +ggplotly(p) + +# Create a shareable link to your chart +# Set up API credentials: https://plot.ly/r/getting-started +chart_link = api_create(p, filename="geom_violin/rotated-text") +chart_link +``` + +```{r echo=FALSE} +chart_link +``` + diff --git a/_posts/ggplot2/2019-08-02-geom_violin.md b/_posts/ggplot2/2019-08-02-geom_violin.md new file mode 100644 index 000000000000..18b3599474b1 --- /dev/null +++ b/_posts/ggplot2/2019-08-02-geom_violin.md @@ -0,0 +1,189 @@ +--- +title: geom_violin | Examples | Plotly +name: geom_violin +permalink: ggplot2/geom_violin/ +description: How to make a density map using geom_violin. Includes explanations on flipping axes and facetting. +layout: base +thumbnail: thumbnail/geom_violin.jpg +language: ggplot2 +page_type: example_index +has_thumbnail: true +display_as: statistical +order: 8 +output: + html_document: + keep_md: true +--- + + + +### New to Plotly? + +Plotly's R library is free and open source!
+[Get started](https://plot.ly/r/getting-started/) by downloading the client and [reading the primer](https://plot.ly/r/getting-started/).
+You can set up Plotly to work in [online](https://plot.ly/r/getting-started/#hosting-graphs-in-your-online-plotly-account) or [offline](https://plot.ly/r/offline/) mode.
+We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/r_cheat_sheet.pdf) (new!) to help you get started! + +### Version Check + +Version 4 of Plotly's R package is now [available](https://plot.ly/r/getting-started/#installation)!
+Check out [this post](http://moderndata.plot.ly/upgrading-to-plotly-4-0-and-above/) for more information on breaking changes and new features available in this version. + + +```r +library(plotly) +packageVersion('plotly') +``` + +``` +## [1] '4.9.0.9000' +``` + +### Basic violin plot +A basic violin plot showing how Democratic vote share in the 2018 elections to the US House of Representatives varied by level of density. A horizontal bar is added, to divide candidates who lost from those who won. + +Source: [Dave Wassermann and Ally Flinn](https://docs.google.com/spreadsheets/d/1WxDaxD5az6kdOjJncmGph37z0BPNhV1fNAH_g7IkpC0/htmlview?sle=true#gid=0) for the election results and CityLab for its [Congressional Density Index](https://github.com/theatlantic/citylab-data/tree/master/citylab-congress). Regional classifications are according to the Census Bureau. + + +```r +library(plotly) +district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE) +district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural")) +district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast")) + +p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) + + geom_violin(colour=NA) + + geom_hline(yintercept=0, alpha=0.5) + + labs(title = "Democratic performance in the 2018 House elections, by region and density", + x = "Density Index\nfrom CityLab", + y = "Margin of Victory/Defeat") +ggplotly(p) + +# Create a shareable link to your chart +# Set up API credentials: https://plot.ly/r/getting-started +chart_link = api_create(p, filename="geom_violin/basic-graph") +chart_link +``` + + + +### Flipping the Axes +With geom\_violin(), the y-axis must always be the continuous variable, and the x-axis the categorical variable. To create horizontal violin graphs, keep the x- and y-variables as is and add coord\_flip(). + + +```r +library(plotly) +district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE) +district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural")) +district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast")) + +p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) + + geom_violin(colour=NA) + + geom_hline(yintercept=0, alpha=0.5) + + labs(title = "Democratic performance in the 2018 House elections, by region and density", + x = "Density Index\nfrom CityLab", + y = "Margin of Victory/Defeat") + + coord_flip() +ggplotly(p) + +# Create a shareable link to your chart +# Set up API credentials: https://plot.ly/r/getting-started +chart_link = api_create(p, filename="geom_violin/flip-axes") +chart_link +``` + + + +### Add facetting +Including facetting by region. + + +```r +library(plotly) +district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE) +district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural")) +district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast")) + +p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) + + geom_violin(colour=NA) + + geom_hline(yintercept=0, alpha=0.5) + + facet_wrap(~region) + + labs(title = "Democratic performance in the 2018 House elections, by region and density", + x = "Density Index\nfrom CityLab", + y = "Margin of Victory/Defeat") + + coord_flip() +ggplotly(p) + +# Create a shareable link to your chart +# Set up API credentials: https://plot.ly/r/getting-started +chart_link = api_create(p, filename="geom_violin/add-facet") +chart_link +``` + + + +### Customized Appearance +Add colour to the facet titles, centre-align the title, rotate the y-axis title, change the font, and get rid of the unnecessary legend. Note that coord_flip() flips the axes for the variables and the titles, but does not flip theme() elements. + + +```r +library(plotly) +district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE) +district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural")) +district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast")) + +p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) + + geom_violin(colour=NA) + + geom_hline(yintercept=0, alpha=0.5) + + facet_wrap(~region) + + labs(title = "Democratic performance in the 2018 House elections, by region and density", + x = "Density Index\nfrom CityLab", + y = "Margin of Victory/Defeat") + + coord_flip() + + theme(axis.title.y = element_text(angle = 0, vjust=0.5), + plot.title = element_text(hjust = 0.5), + strip.background = element_rect(fill="lightblue"), + text = element_text(family = 'Fira Sans'), + legend.position = "none") +ggplotly(p) + +# Create a shareable link to your chart +# Set up API credentials: https://plot.ly/r/getting-started +chart_link = api_create(p, filename="geom_violin/customize-theme") +chart_link +``` + + + +### Rotated Axis Text +Rotated the x-axis text 45 degrees, and used facet\_grid to create a 4x1 facet (compared to facet\_wrap, which defaults to 2x2). + + +```r +library(plotly) +district_density <- read.csv("https://raw.githubusercontent.com/plotly/datasets/master/district_density.csv", stringsAsFactors = FALSE) +district_density$cluster <- factor(district_density$cluster, levels=c("Pure urban", "Urban-suburban mix", "Dense suburban", "Sparse suburban", "Rural-suburban mix", "Pure rural")) +district_density$region <- factor(district_density$region, levels=c("West", "South", "Midwest", "Northeast")) + +p <- ggplot(district_density,aes(x=cluster, y=dem_margin, fill=cluster)) + + geom_violin(colour=NA) + + geom_hline(yintercept=0, alpha=0.5) + + facet_grid(.~region) + + labs(title = "Democratic performance in the 2018 House elections, by region and density", + x = "Density Index\nfrom CityLab", + y = "Margin of Victory/Defeat") + + theme(axis.text.x = element_text(angle = -45), + plot.title = element_text(hjust = 0.5), + strip.background = element_rect(fill="lightblue"), + text = element_text(family = 'Fira Sans'), + legend.position = "none") +ggplotly(p) + +# Create a shareable link to your chart +# Set up API credentials: https://plot.ly/r/getting-started +chart_link = api_create(p, filename="geom_violin/rotated-text") +chart_link +``` + + +