diff --git a/ci/code_checks.sh b/ci/code_checks.sh index f2d9f582d8932..ca336fdebabc0 100755 --- a/ci/code_checks.sh +++ b/ci/code_checks.sh @@ -119,7 +119,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then -i "pandas.api.types.is_hashable PR01,RT03,SA01" \ -i "pandas.api.types.is_int64_dtype SA01" \ -i "pandas.api.types.is_integer PR01,SA01" \ - -i "pandas.api.types.is_interval_dtype SA01" \ -i "pandas.api.types.is_iterator PR07,SA01" \ -i "pandas.api.types.is_list_like SA01" \ -i "pandas.api.types.is_named_tuple PR07,SA01" \ diff --git a/pandas/core/dtypes/common.py b/pandas/core/dtypes/common.py index ff855f97a352b..1b388b9f4acf4 100644 --- a/pandas/core/dtypes/common.py +++ b/pandas/core/dtypes/common.py @@ -479,6 +479,15 @@ def is_interval_dtype(arr_or_dtype) -> bool: boolean Whether or not the array-like or dtype is of the Interval dtype. + See Also + -------- + api.types.is_object_dtype : Check whether an array-like or dtype is of the + object dtype. + api.types.is_numeric_dtype : Check whether the provided array or dtype is + of a numeric dtype. + api.types.is_categorical_dtype : Check whether an array-like or dtype is of + the Categorical dtype. + Examples -------- >>> from pandas.core.dtypes.common import is_interval_dtype