diff --git a/ci/code_checks.sh b/ci/code_checks.sh index f2d9f582d8932..00f5117c9eb00 100755 --- a/ci/code_checks.sh +++ b/ci/code_checks.sh @@ -115,7 +115,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then -i "pandas.api.types.is_dict_like PR07,SA01" \ -i "pandas.api.types.is_file_like PR07,SA01" \ -i "pandas.api.types.is_float PR01,SA01" \ - -i "pandas.api.types.is_float_dtype SA01" \ -i "pandas.api.types.is_hashable PR01,RT03,SA01" \ -i "pandas.api.types.is_int64_dtype SA01" \ -i "pandas.api.types.is_integer PR01,SA01" \ diff --git a/pandas/core/dtypes/common.py b/pandas/core/dtypes/common.py index ff855f97a352b..b1fe9d17c67d7 100644 --- a/pandas/core/dtypes/common.py +++ b/pandas/core/dtypes/common.py @@ -1275,6 +1275,9 @@ def is_float_dtype(arr_or_dtype) -> bool: """ Check whether the provided array or dtype is of a float dtype. + The function checks for floating-point data types, which represent real numbers + that may have fractional components. + Parameters ---------- arr_or_dtype : array-like or dtype @@ -1285,6 +1288,15 @@ def is_float_dtype(arr_or_dtype) -> bool: boolean Whether or not the array or dtype is of a float dtype. + See Also + -------- + api.types.is_numeric_dtype : Check whether the provided array or dtype is of + a numeric dtype. + api.types.is_integer_dtype : Check whether the provided array or dtype is of + an integer dtype. + api.types.is_object_dtype : Check whether an array-like or dtype is of the + object dtype. + Examples -------- >>> from pandas.api.types import is_float_dtype