diff --git a/pandas/core/base.py b/pandas/core/base.py index b784dc8b03292..863cf978426e2 100644 --- a/pandas/core/base.py +++ b/pandas/core/base.py @@ -1049,6 +1049,34 @@ def value_counts( 4.0 1 NaN 1 Name: count, dtype: int64 + + **Categorical Dtypes** + + Rows with categorical type will be counted as one group + if they have same categories and order. + In the example below, even though ``a``, ``c``, and ``d`` + all have the same data types of ``category``, + only ``c`` and ``d`` will be counted as one group + since ``a`` doesn't have the same categories. + + >>> df = pd.DataFrame({"a": [1], "b": ["2"], "c": [3], "d": [3]}) + >>> df = df.astype({"a": "category", "c": "category", "d": "category"}) + >>> df + a b c d + 0 1 2 3 3 + + >>> df.dtypes + a category + b object + c category + d category + dtype: object + + >>> df.dtypes.value_counts() + category 2 + category 1 + object 1 + Name: count, dtype: int64 """ return algorithms.value_counts_internal( self,