diff --git a/doc/source/getting_started/comparison/comparison_with_r.rst b/doc/source/getting_started/comparison/comparison_with_r.rst index a6cfcd4614984..25ba237e8caf3 100644 --- a/doc/source/getting_started/comparison/comparison_with_r.rst +++ b/doc/source/getting_started/comparison/comparison_with_r.rst @@ -438,7 +438,7 @@ In Python, the :meth:`~pandas.melt` method is the R equivalent: ) pd.melt(cheese, id_vars=["first", "last"]) - cheese.set_index(["first", "last"]).stack(future_stack=True) # alternative way + cheese.set_index(["first", "last"]).stack() # alternative way For more details and examples see :ref:`the reshaping documentation `. diff --git a/doc/source/user_guide/10min.rst b/doc/source/user_guide/10min.rst index 7643828ca5a63..0c3307cdd7473 100644 --- a/doc/source/user_guide/10min.rst +++ b/doc/source/user_guide/10min.rst @@ -563,7 +563,7 @@ columns: .. ipython:: python - stacked = df2.stack(future_stack=True) + stacked = df2.stack() stacked With a "stacked" DataFrame or Series (having a :class:`MultiIndex` as the diff --git a/doc/source/user_guide/cookbook.rst b/doc/source/user_guide/cookbook.rst index b1a6aa8753be1..3dfc6534f2b64 100644 --- a/doc/source/user_guide/cookbook.rst +++ b/doc/source/user_guide/cookbook.rst @@ -311,7 +311,7 @@ The :ref:`multindexing ` docs. df.columns = pd.MultiIndex.from_tuples([tuple(c.split("_")) for c in df.columns]) df # Now stack & Reset - df = df.stack(0, future_stack=True).reset_index(1) + df = df.stack(0).reset_index(1) df # And fix the labels (Notice the label 'level_1' got added automatically) df.columns = ["Sample", "All_X", "All_Y"] @@ -688,7 +688,7 @@ The :ref:`Pivot ` docs. aggfunc="sum", margins=True, ) - table.stack("City", future_stack=True) + table.stack("City") `Frequency table like plyr in R `__ diff --git a/doc/source/user_guide/groupby.rst b/doc/source/user_guide/groupby.rst index 19c2abf10651d..7f957a8b16787 100644 --- a/doc/source/user_guide/groupby.rst +++ b/doc/source/user_guide/groupby.rst @@ -1721,4 +1721,4 @@ column index name will be used as the name of the inserted column: result - result.stack(future_stack=True) + result.stack() diff --git a/doc/source/user_guide/reshaping.rst b/doc/source/user_guide/reshaping.rst index a35cfb396f1f6..3347f3a2534f4 100644 --- a/doc/source/user_guide/reshaping.rst +++ b/doc/source/user_guide/reshaping.rst @@ -163,7 +163,7 @@ as having a multi-level index: .. ipython:: python - table.stack(future_stack=True) + table.stack() .. _reshaping.stacking: @@ -209,7 +209,7 @@ stacked level becomes the new lowest level in a :class:`MultiIndex` on the colum .. ipython:: python - stacked = df2.stack(future_stack=True) + stacked = df2.stack() stacked With a "stacked" :class:`DataFrame` or :class:`Series` (having a :class:`MultiIndex` as the @@ -245,7 +245,7 @@ will result in a **sorted** copy of the original :class:`DataFrame` or :class:`S index = pd.MultiIndex.from_product([[2, 1], ["a", "b"]]) df = pd.DataFrame(np.random.randn(4), index=index, columns=["A"]) df - all(df.unstack().stack(future_stack=True) == df.sort_index()) + all(df.unstack().stack() == df.sort_index()) .. _reshaping.stack_multiple: @@ -270,16 +270,16 @@ processed individually. df = pd.DataFrame(np.random.randn(4, 4), columns=columns) df - df.stack(level=["animal", "hair_length"], future_stack=True) + df.stack(level=["animal", "hair_length"]) The list of levels can contain either level names or level numbers but not a mixture of the two. .. ipython:: python - # df.stack(level=['animal', 'hair_length'], future_stack=True) + # df.stack(level=['animal', 'hair_length']) # from above is equivalent to: - df.stack(level=[1, 2], future_stack=True) + df.stack(level=[1, 2]) Missing data ~~~~~~~~~~~~ diff --git a/doc/source/whatsnew/v3.0.0.rst b/doc/source/whatsnew/v3.0.0.rst index e07ee3cbe2867..f8edbfffd5af0 100644 --- a/doc/source/whatsnew/v3.0.0.rst +++ b/doc/source/whatsnew/v3.0.0.rst @@ -108,6 +108,7 @@ Removal of prior version deprecations/changes - All arguments except the first ``path``-like argument in IO writers are now keyword only (:issue:`54229`) - Changed the default value of ``observed`` in :meth:`DataFrame.groupby` and :meth:`Series.groupby` to ``True`` (:issue:`51811`) - Enforced silent-downcasting deprecation for :ref:`all relevant methods ` (:issue:`54710`) +- In :meth:`DataFrame.stack`, the default value of ``future_stack`` is now ``True``; specifying ``False`` will raise a ``FutureWarning`` (:issue:`55448`) - Removed ``DataFrame.applymap``, ``Styler.applymap`` and ``Styler.applymap_index`` (:issue:`52364`) - Removed ``DataFrame.bool`` and ``Series.bool`` (:issue:`51756`) - Removed ``DataFrame.first`` and ``DataFrame.last`` (:issue:`53710`) diff --git a/pandas/core/frame.py b/pandas/core/frame.py index 927518b766cc2..923385d090078 100644 --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -9191,7 +9191,7 @@ def stack( level: IndexLabel = -1, dropna: bool | lib.NoDefault = lib.no_default, sort: bool | lib.NoDefault = lib.no_default, - future_stack: bool = False, + future_stack: bool = True, ): """ Stack the prescribed level(s) from columns to index. @@ -9264,7 +9264,7 @@ def stack( weight height cat 0 1 dog 2 3 - >>> df_single_level_cols.stack(future_stack=True) + >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 @@ -9287,7 +9287,7 @@ def stack( kg pounds cat 1 2 dog 2 4 - >>> df_multi_level_cols1.stack(future_stack=True) + >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 @@ -9311,7 +9311,7 @@ def stack( kg m cat 1.0 2.0 dog 3.0 4.0 - >>> df_multi_level_cols2.stack(future_stack=True) + >>> df_multi_level_cols2.stack() weight height cat kg 1.0 NaN m NaN 2.0 @@ -9322,13 +9322,13 @@ def stack( The first parameter controls which level or levels are stacked: - >>> df_multi_level_cols2.stack(0, future_stack=True) + >>> df_multi_level_cols2.stack(0) kg m cat weight 1.0 NaN height NaN 2.0 dog weight 3.0 NaN height NaN 4.0 - >>> df_multi_level_cols2.stack([0, 1], future_stack=True) + >>> df_multi_level_cols2.stack([0, 1]) cat weight kg 1.0 height m 2.0 dog weight kg 3.0 @@ -9341,19 +9341,14 @@ def stack( stack_multiple, ) - if ( - dropna is not lib.no_default - or sort is not lib.no_default - or self.columns.nlevels > 1 - ): - warnings.warn( - "The previous implementation of stack is deprecated and will be " - "removed in a future version of pandas. See the What's New notes " - "for pandas 2.1.0 for details. Specify future_stack=True to adopt " - "the new implementation and silence this warning.", - FutureWarning, - stacklevel=find_stack_level(), - ) + warnings.warn( + "The previous implementation of stack is deprecated and will be " + "removed in a future version of pandas. See the What's New notes " + "for pandas 2.1.0 for details. Do not specify the future_stack " + "argument to adopt the new implementation and silence this warning.", + FutureWarning, + stacklevel=find_stack_level(), + ) if dropna is lib.no_default: dropna = True @@ -9369,14 +9364,14 @@ def stack( if dropna is not lib.no_default: raise ValueError( - "dropna must be unspecified with future_stack=True as the new " + "dropna must be unspecified as the new " "implementation does not introduce rows of NA values. This " "argument will be removed in a future version of pandas." ) if sort is not lib.no_default: raise ValueError( - "Cannot specify sort with future_stack=True, this argument will be " + "Cannot specify sort, this argument will be " "removed in a future version of pandas. Sort the result using " ".sort_index instead." ) diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py index 30559ae91ce41..dfe145783c4a3 100644 --- a/pandas/core/groupby/generic.py +++ b/pandas/core/groupby/generic.py @@ -513,7 +513,7 @@ def _wrap_applied_output( res_df = self.obj._constructor_expanddim(values, index=index) # if self.observed is False, # keep all-NaN rows created while re-indexing - res_ser = res_df.stack(future_stack=True) + res_ser = res_df.stack() res_ser.name = self.obj.name return res_ser elif isinstance(values[0], (Series, DataFrame)): diff --git a/pandas/core/resample.py b/pandas/core/resample.py index cbe280b9184c3..e60dcdb10e653 100644 --- a/pandas/core/resample.py +++ b/pandas/core/resample.py @@ -1370,7 +1370,7 @@ def size(self): # If the result is a non-empty DataFrame we stack to get a Series # GH 46826 if isinstance(result, ABCDataFrame) and not result.empty: - result = result.stack(future_stack=True) + result = result.stack() if not len(self.ax): from pandas import Series diff --git a/pandas/core/reshape/pivot.py b/pandas/core/reshape/pivot.py index bd927472f06d3..f0eb7f44bf34e 100644 --- a/pandas/core/reshape/pivot.py +++ b/pandas/core/reshape/pivot.py @@ -420,7 +420,7 @@ def _all_key(key): if len(cols) > 0: row_margin = data[cols + values].groupby(cols, observed=observed).agg(aggfunc) - row_margin = row_margin.stack(future_stack=True) + row_margin = row_margin.stack() # GH#26568. Use names instead of indices in case of numeric names new_order_indices = [len(cols)] + list(range(len(cols))) diff --git a/pandas/core/reshape/reshape.py b/pandas/core/reshape/reshape.py index bb544b588dd35..e8ef393da38d9 100644 --- a/pandas/core/reshape/reshape.py +++ b/pandas/core/reshape/reshape.py @@ -518,7 +518,7 @@ def unstack( if isinstance(obj.index, MultiIndex): return _unstack_frame(obj, level, fill_value=fill_value, sort=sort) else: - return obj.T.stack(future_stack=True) + return obj.T.stack() elif not isinstance(obj.index, MultiIndex): # GH 36113 # Give nicer error messages when unstack a Series whose diff --git a/pandas/tests/extension/json/test_json.py b/pandas/tests/extension/json/test_json.py index 1e4897368cc7a..5657cb92f72fc 100644 --- a/pandas/tests/extension/json/test_json.py +++ b/pandas/tests/extension/json/test_json.py @@ -127,7 +127,7 @@ def test_series_constructor_scalar_with_index(self, data, dtype): @pytest.mark.xfail(reason="Different definitions of NA") def test_stack(self): """ - The test does .astype(object).stack(future_stack=True). If we happen to have + The test does .astype(object).stack(). If we happen to have any missing values in `data`, then we'll end up with different rows since we consider `{}` NA, but `.astype(object)` doesn't. """ diff --git a/pandas/tests/frame/methods/test_reset_index.py b/pandas/tests/frame/methods/test_reset_index.py index a77e063b5f353..22ce091d4ed62 100644 --- a/pandas/tests/frame/methods/test_reset_index.py +++ b/pandas/tests/frame/methods/test_reset_index.py @@ -106,7 +106,7 @@ def test_reset_index_with_intervals(self): tm.assert_frame_equal(result2, original) def test_reset_index(self, float_frame): - stacked = float_frame.stack(future_stack=True)[::2] + stacked = float_frame.stack()[::2] stacked = DataFrame({"foo": stacked, "bar": stacked}) names = ["first", "second"] @@ -739,7 +739,7 @@ def test_reset_index_rename(float_frame): def test_reset_index_rename_multiindex(float_frame): # GH 6878 - stacked_df = float_frame.stack(future_stack=True)[::2] + stacked_df = float_frame.stack()[::2] stacked_df = DataFrame({"foo": stacked_df, "bar": stacked_df}) names = ["first", "second"] @@ -753,7 +753,7 @@ def test_reset_index_rename_multiindex(float_frame): def test_errorreset_index_rename(float_frame): # GH 6878 - stacked_df = float_frame.stack(future_stack=True)[::2] + stacked_df = float_frame.stack()[::2] stacked_df = DataFrame({"first": stacked_df, "second": stacked_df}) with pytest.raises( diff --git a/pandas/tests/frame/test_stack_unstack.py b/pandas/tests/frame/test_stack_unstack.py index 15426b117614c..b73eb21d21c08 100644 --- a/pandas/tests/frame/test_stack_unstack.py +++ b/pandas/tests/frame/test_stack_unstack.py @@ -28,6 +28,9 @@ def future_stack(request): class TestDataFrameReshape: + @pytest.mark.filterwarnings( + "ignore:The previous implementation of stack is deprecated" + ) def test_stack_unstack(self, float_frame, future_stack): df = float_frame.copy() df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) @@ -1157,6 +1160,9 @@ def test_stack_full_multiIndex(self, future_stack): expected["B"] = expected["B"].astype(df.dtypes.iloc[0]) tm.assert_frame_equal(result, expected) + @pytest.mark.filterwarnings( + "ignore:The previous implementation of stack is deprecated" + ) @pytest.mark.parametrize("ordered", [False, True]) def test_stack_preserve_categorical_dtype(self, ordered, future_stack): # GH13854 @@ -1201,6 +1207,9 @@ def test_stack_multi_preserve_categorical_dtype( tm.assert_series_equal(result, expected) + @pytest.mark.filterwarnings( + "ignore:The previous implementation of stack is deprecated" + ) def test_stack_preserve_categorical_dtype_values(self, future_stack): # GH-23077 cat = pd.Categorical(["a", "a", "b", "c"]) @@ -1393,6 +1402,7 @@ def test_unstack_timezone_aware_values(): tm.assert_frame_equal(result, expected) +@pytest.mark.filterwarnings("ignore:The previous implementation of stack is deprecated") def test_stack_timezone_aware_values(future_stack): # GH 19420 ts = date_range(freq="D", start="20180101", end="20180103", tz="America/New_York") @@ -1719,6 +1729,9 @@ def test_stack(self, multiindex_year_month_day_dataframe_random_data, future_sta expected = ymd.unstack(0).stack(0, future_stack=future_stack) tm.assert_equal(result, expected) + @pytest.mark.filterwarnings( + "ignore:The previous implementation of stack is deprecated" + ) @pytest.mark.parametrize( "idx, exp_idx", [ @@ -1805,6 +1818,9 @@ def test_stack_mixed_dtype(self, multiindex_dataframe_random_data, future_stack) assert result.name is None assert stacked["bar"].dtype == np.float64 + @pytest.mark.filterwarnings( + "ignore:The previous implementation of stack is deprecated" + ) def test_unstack_bug(self, future_stack): df = DataFrame( { @@ -1839,6 +1855,9 @@ def test_stack_unstack_preserve_names( restacked = unstacked.stack(future_stack=future_stack) assert restacked.index.names == frame.index.names + @pytest.mark.filterwarnings( + "ignore:The previous implementation of stack is deprecated" + ) @pytest.mark.parametrize("method", ["stack", "unstack"]) def test_stack_unstack_wrong_level_name( self, method, multiindex_dataframe_random_data, future_stack @@ -2308,6 +2327,9 @@ def test_unstack_preserve_types( ) assert unstacked["F", 1].dtype == np.float64 + @pytest.mark.filterwarnings( + "ignore:The previous implementation of stack is deprecated" + ) def test_unstack_group_index_overflow(self, future_stack): codes = np.tile(np.arange(500), 2) level = np.arange(500) @@ -2610,6 +2632,7 @@ def test_unstack_mixed_level_names(self): tm.assert_frame_equal(result, expected) +@pytest.mark.filterwarnings("ignore:The previous implementation of stack is deprecated") def test_stack_tuple_columns(future_stack): # GH#54948 - test stack when the input has a non-MultiIndex with tuples df = DataFrame( @@ -2643,7 +2666,7 @@ def test_stack_preserves_na(dtype, na_value, test_multiindex): else: index = Index([na_value], dtype=dtype) df = DataFrame({"a": [1]}, index=index) - result = df.stack(future_stack=True) + result = df.stack() if test_multiindex: expected_index = MultiIndex.from_arrays( diff --git a/pandas/tests/frame/test_subclass.py b/pandas/tests/frame/test_subclass.py index 91f5de8e7d7f3..316216e69a587 100644 --- a/pandas/tests/frame/test_subclass.py +++ b/pandas/tests/frame/test_subclass.py @@ -208,7 +208,7 @@ def test_subclass_stack(self): columns=["X", "Y", "Z"], ) - res = df.stack(future_stack=True) + res = df.stack() exp = tm.SubclassedSeries( [1, 2, 3, 4, 5, 6, 7, 8, 9], index=[list("aaabbbccc"), list("XYZXYZXYZ")] ) @@ -245,10 +245,10 @@ def test_subclass_stack_multi(self): columns=Index(["W", "X"], name="www"), ) - res = df.stack(future_stack=True) + res = df.stack() tm.assert_frame_equal(res, exp) - res = df.stack("yyy", future_stack=True) + res = df.stack("yyy") tm.assert_frame_equal(res, exp) exp = tm.SubclassedDataFrame( @@ -269,7 +269,7 @@ def test_subclass_stack_multi(self): columns=Index(["y", "z"], name="yyy"), ) - res = df.stack("www", future_stack=True) + res = df.stack("www") tm.assert_frame_equal(res, exp) def test_subclass_stack_multi_mixed(self): @@ -307,10 +307,10 @@ def test_subclass_stack_multi_mixed(self): columns=Index(["W", "X"], name="www"), ) - res = df.stack(future_stack=True) + res = df.stack() tm.assert_frame_equal(res, exp) - res = df.stack("yyy", future_stack=True) + res = df.stack("yyy") tm.assert_frame_equal(res, exp) exp = tm.SubclassedDataFrame( @@ -331,7 +331,7 @@ def test_subclass_stack_multi_mixed(self): columns=Index(["y", "z"], name="yyy"), ) - res = df.stack("www", future_stack=True) + res = df.stack("www") tm.assert_frame_equal(res, exp) def test_subclass_unstack(self): diff --git a/pandas/tests/groupby/aggregate/test_cython.py b/pandas/tests/groupby/aggregate/test_cython.py index b1f8ecc9c8a39..19eef06de9136 100644 --- a/pandas/tests/groupby/aggregate/test_cython.py +++ b/pandas/tests/groupby/aggregate/test_cython.py @@ -68,7 +68,7 @@ def test_cythonized_aggers(op_name): expd = {} for (cat1, cat2), group in grouped: expd.setdefault(cat1, {})[cat2] = op(group["C"]) - exp = DataFrame(expd).T.stack(future_stack=True) + exp = DataFrame(expd).T.stack() exp.index.names = ["A", "B"] exp.name = "C" diff --git a/pandas/tests/groupby/methods/test_describe.py b/pandas/tests/groupby/methods/test_describe.py index 274e23abd77d9..3b6fbfa0a31fc 100644 --- a/pandas/tests/groupby/methods/test_describe.py +++ b/pandas/tests/groupby/methods/test_describe.py @@ -35,7 +35,7 @@ def test_series_describe_single(): ) grouped = ts.groupby(lambda x: x.month) result = grouped.apply(lambda x: x.describe()) - expected = grouped.describe().stack(future_stack=True) + expected = grouped.describe().stack() tm.assert_series_equal(result, expected) diff --git a/pandas/tests/groupby/test_categorical.py b/pandas/tests/groupby/test_categorical.py index d8014558c52b2..10eca5ea8427f 100644 --- a/pandas/tests/groupby/test_categorical.py +++ b/pandas/tests/groupby/test_categorical.py @@ -240,13 +240,9 @@ def f(x): # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) - tm.assert_index_equal( - (desc_result.stack(future_stack=True).index.get_level_values(0)), exp - ) + tm.assert_index_equal((desc_result.stack().index.get_level_values(0)), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) - tm.assert_index_equal( - (desc_result.stack(future_stack=True).index.get_level_values(1)), exp - ) + tm.assert_index_equal((desc_result.stack().index.get_level_values(1)), exp) def test_level_get_group(observed): @@ -684,13 +680,9 @@ def test_datetime(): # GH 10460 expc = Categorical.from_codes(np.arange(4).repeat(8), levels, ordered=True) exp = CategoricalIndex(expc) - tm.assert_index_equal( - (desc_result.stack(future_stack=True).index.get_level_values(0)), exp - ) + tm.assert_index_equal((desc_result.stack().index.get_level_values(0)), exp) exp = Index(["count", "mean", "std", "min", "25%", "50%", "75%", "max"] * 4) - tm.assert_index_equal( - (desc_result.stack(future_stack=True).index.get_level_values(1)), exp - ) + tm.assert_index_equal((desc_result.stack().index.get_level_values(1)), exp) def test_categorical_index(): @@ -728,10 +720,8 @@ def test_describe_categorical_columns(): df = DataFrame(np.random.default_rng(2).standard_normal((20, 4)), columns=cats) result = df.groupby([1, 2, 3, 4] * 5).describe() - tm.assert_index_equal(result.stack(future_stack=True).columns, cats) - tm.assert_categorical_equal( - result.stack(future_stack=True).columns.values, cats.values - ) + tm.assert_index_equal(result.stack().columns, cats) + tm.assert_categorical_equal(result.stack().columns.values, cats.values) def test_unstack_categorical(): diff --git a/pandas/tests/indexes/multi/test_indexing.py b/pandas/tests/indexes/multi/test_indexing.py index f426a3ee42566..12adbeefa680a 100644 --- a/pandas/tests/indexes/multi/test_indexing.py +++ b/pandas/tests/indexes/multi/test_indexing.py @@ -43,12 +43,12 @@ def test_slice_locs(self): columns=Index(list("ABCD"), dtype=object), index=date_range("2000-01-01", periods=50, freq="B"), ) - stacked = df.stack(future_stack=True) + stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] - expected = df[5:16].stack(future_stack=True) + expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice( @@ -58,7 +58,7 @@ def test_slice_locs(self): ) ) sliced = stacked[slob] - expected = df[6:15].stack(future_stack=True) + expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): @@ -67,7 +67,7 @@ def test_slice_locs_with_type_mismatch(self): columns=Index(list("ABCD"), dtype=object), index=date_range("2000-01-01", periods=10, freq="B"), ) - stacked = df.stack(future_stack=True) + stacked = df.stack() idx = stacked.index with pytest.raises(TypeError, match="^Level type mismatch"): idx.slice_locs((1, 3)) @@ -78,7 +78,7 @@ def test_slice_locs_with_type_mismatch(self): index=Index([f"i-{i}" for i in range(5)], name="a"), columns=Index([f"i-{i}" for i in range(5)], name="a"), ) - stacked = df.stack(future_stack=True) + stacked = df.stack() idx = stacked.index with pytest.raises(TypeError, match="^Level type mismatch"): idx.slice_locs(timedelta(seconds=30)) diff --git a/pandas/tests/indexes/multi/test_integrity.py b/pandas/tests/indexes/multi/test_integrity.py index 9fabd8622a108..f6d960bd41925 100644 --- a/pandas/tests/indexes/multi/test_integrity.py +++ b/pandas/tests/indexes/multi/test_integrity.py @@ -247,7 +247,7 @@ def test_rangeindex_fallback_coercion_bug(): df1 = pd.DataFrame(np.arange(100).reshape((10, 10))) df2 = pd.DataFrame(np.arange(100).reshape((10, 10))) df = pd.concat( - {"df1": df1.stack(future_stack=True), "df2": df2.stack(future_stack=True)}, + {"df1": df1.stack(), "df2": df2.stack()}, axis=1, ) df.index.names = ["fizz", "buzz"] diff --git a/pandas/tests/io/json/test_pandas.py b/pandas/tests/io/json/test_pandas.py index b9d97e7b75436..28b5fa57d4109 100644 --- a/pandas/tests/io/json/test_pandas.py +++ b/pandas/tests/io/json/test_pandas.py @@ -1876,7 +1876,7 @@ def test_json_multiindex(self): '{"(0, \'x\')":1,"(0, \'y\')":"a","(1, \'x\')":2,' '"(1, \'y\')":"b","(2, \'x\')":3,"(2, \'y\')":"c"}' ) - series = dataframe.stack(future_stack=True) + series = dataframe.stack() result = series.to_json(orient="index") assert result == expected @@ -1915,7 +1915,7 @@ def test_to_json_multiindex_escape(self): True, index=date_range("2017-01-20", "2017-01-23"), columns=["foo", "bar"], - ).stack(future_stack=True) + ).stack() result = df.to_json() expected = ( "{\"(Timestamp('2017-01-20 00:00:00'), 'foo')\":true," diff --git a/pandas/tests/io/pytables/test_append.py b/pandas/tests/io/pytables/test_append.py index 706610316ef43..aff08e5ad3882 100644 --- a/pandas/tests/io/pytables/test_append.py +++ b/pandas/tests/io/pytables/test_append.py @@ -141,7 +141,7 @@ def test_append_series(setup_path): mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) - s = mi.stack(future_stack=True) + s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s, check_index_type=True) diff --git a/pandas/tests/series/methods/test_reset_index.py b/pandas/tests/series/methods/test_reset_index.py index 48e2608a1032a..32b6cbd5acce3 100644 --- a/pandas/tests/series/methods/test_reset_index.py +++ b/pandas/tests/series/methods/test_reset_index.py @@ -39,7 +39,7 @@ def test_reset_index(self): columns=Index(list("ABCD"), dtype=object), index=Index([f"i-{i}" for i in range(30)], dtype=object), )[:5] - ser = df.stack(future_stack=True) + ser = df.stack() ser.index.names = ["hash", "category"] ser.name = "value" diff --git a/pandas/tests/series/methods/test_unstack.py b/pandas/tests/series/methods/test_unstack.py index ad11827117209..f9e6dc644e908 100644 --- a/pandas/tests/series/methods/test_unstack.py +++ b/pandas/tests/series/methods/test_unstack.py @@ -140,7 +140,7 @@ def test_unstack_multi_index_categorical_values(): columns=Index(list("ABCD"), dtype=object), index=date_range("2000-01-01", periods=10, freq="B"), ) - mi = df.stack(future_stack=True).index.rename(["major", "minor"]) + mi = df.stack().index.rename(["major", "minor"]) ser = Series(["foo"] * len(mi), index=mi, name="category", dtype="category") result = ser.unstack()