From 89fd01d633de5f9c5c330a7697a14d60d8c36368 Mon Sep 17 00:00:00 2001 From: Brock Date: Thu, 16 Nov 2023 12:47:46 -0800 Subject: [PATCH] CLN: remove no-longer-needed --- pandas/core/arrays/datetimelike.py | 33 ------------------------------ pandas/core/indexes/timedeltas.py | 3 +-- 2 files changed, 1 insertion(+), 35 deletions(-) diff --git a/pandas/core/arrays/datetimelike.py b/pandas/core/arrays/datetimelike.py index f0b9219682350..a88f40013b3f6 100644 --- a/pandas/core/arrays/datetimelike.py +++ b/pandas/core/arrays/datetimelike.py @@ -2483,11 +2483,6 @@ def _validate_inferred_freq( Returns ------- freq : DateOffset or None - - Notes - ----- - We assume at this point that `maybe_infer_freq` has been called, so - `freq` is either a DateOffset object or None. """ if inferred_freq is not None: if freq is not None and freq != inferred_freq: @@ -2502,34 +2497,6 @@ def _validate_inferred_freq( return freq -def maybe_infer_freq(freq) -> tuple[BaseOffset | None, bool]: - """ - Comparing a DateOffset to the string "infer" raises, so we need to - be careful about comparisons. Make a dummy variable `freq_infer` to - signify the case where the given freq is "infer" and set freq to None - to avoid comparison trouble later on. - - Parameters - ---------- - freq : {DateOffset, None, str} - - Returns - ------- - freq : {DateOffset, None} - freq_infer : bool - Whether we should inherit the freq of passed data. - """ - freq_infer = False - if not isinstance(freq, BaseOffset): - # if a passed freq is None, don't infer automatically - if freq != "infer": - freq = to_offset(freq) - else: - freq_infer = True - freq = None - return freq, freq_infer - - def dtype_to_unit(dtype: DatetimeTZDtype | np.dtype) -> str: """ Return the unit str corresponding to the dtype's resolution. diff --git a/pandas/core/indexes/timedeltas.py b/pandas/core/indexes/timedeltas.py index 9d8ef5b0a69cd..d33e704d24c9f 100644 --- a/pandas/core/indexes/timedeltas.py +++ b/pandas/core/indexes/timedeltas.py @@ -22,7 +22,6 @@ ) from pandas.core.dtypes.generic import ABCSeries -from pandas.core.arrays import datetimelike as dtl from pandas.core.arrays.timedeltas import TimedeltaArray import pandas.core.common as com from pandas.core.indexes.base import ( @@ -338,7 +337,7 @@ def timedelta_range( if freq is None and com.any_none(periods, start, end): freq = "D" - freq, _ = dtl.maybe_infer_freq(freq) + freq = to_offset(freq) tdarr = TimedeltaArray._generate_range( start, end, periods, freq, closed=closed, unit=unit )