diff --git a/pandas/core/generic.py b/pandas/core/generic.py index 2f4340c17c5a7..e34cdf1482021 100644 --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -6317,7 +6317,7 @@ def fillna( ... [3, 4, np.nan, 1], ... [np.nan, np.nan, np.nan, 5], ... [np.nan, 3, np.nan, 4]], - ... columns=list('ABCD')) + ... columns=list("ABCD")) >>> df A B C D 0 NaN 2.0 NaN 0 @@ -6336,7 +6336,7 @@ def fillna( We can also propagate non-null values forward or backward. - >>> df.fillna(method='ffill') + >>> df.fillna(method="ffill") A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 @@ -6346,7 +6346,7 @@ def fillna( Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1, 2, and 3 respectively. - >>> values = {{'A': 0, 'B': 1, 'C': 2, 'D': 3}} + >>> values = {{"A": 0, "B": 1, "C": 2, "D": 3}} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0 @@ -6362,6 +6362,17 @@ def fillna( 1 3.0 4.0 NaN 1 2 NaN 1.0 NaN 5 3 NaN 3.0 NaN 4 + + When filling using a DataFrame, replacement happens along + the same column names and same indices + + >>> df2 = pd.DataFrame(np.zeros((4, 4)), columns=list("ABCE")) + >>> df.fillna(df2) + A B C D + 0 0.0 2.0 0.0 0 + 1 3.0 4.0 0.0 1 + 2 0.0 0.0 0.0 5 + 3 0.0 3.0 0.0 4 """ inplace = validate_bool_kwarg(inplace, "inplace") value, method = validate_fillna_kwargs(value, method)