diff --git a/pandas/tests/frame/indexing/test_indexing.py b/pandas/tests/frame/indexing/test_indexing.py index e33009f4597f0..6d4129a1a2a55 100644 --- a/pandas/tests/frame/indexing/test_indexing.py +++ b/pandas/tests/frame/indexing/test_indexing.py @@ -714,7 +714,7 @@ def test_setitem_empty(self): tm.assert_frame_equal(result, df) @pytest.mark.parametrize("dtype", ["float", "int64"]) - @pytest.mark.parametrize("kwargs", [dict(), dict(index=[1]), dict(columns=["A"])]) + @pytest.mark.parametrize("kwargs", [{}, {"index": [1]}, {"columns": ["A"]}]) def test_setitem_empty_frame_with_boolean(self, dtype, kwargs): # see gh-10126 kwargs["dtype"] = dtype @@ -1238,7 +1238,7 @@ def test_single_element_ix_dont_upcast(self, float_frame): assert is_integer(result) # GH 11617 - df = DataFrame(dict(a=[1.23])) + df = DataFrame({"a": [1.23]}) df["b"] = 666 result = df.loc[0, "b"] diff --git a/pandas/tests/frame/indexing/test_where.py b/pandas/tests/frame/indexing/test_where.py index 3495247585236..acdb5726e4adb 100644 --- a/pandas/tests/frame/indexing/test_where.py +++ b/pandas/tests/frame/indexing/test_where.py @@ -356,11 +356,11 @@ def test_where_datetime(self): # GH 3311 df = DataFrame( - dict( - A=date_range("20130102", periods=5), - B=date_range("20130104", periods=5), - C=np.random.randn(5), - ) + { + "A": date_range("20130102", periods=5), + "B": date_range("20130104", periods=5), + "C": np.random.randn(5), + } ) stamp = datetime(2013, 1, 3) @@ -618,7 +618,7 @@ def test_df_where_change_dtype(self): tm.assert_frame_equal(result, expected) - @pytest.mark.parametrize("kwargs", [dict(), dict(other=None)]) + @pytest.mark.parametrize("kwargs", [{}, {"other": None}]) def test_df_where_with_category(self, kwargs): # GH#16979 df = DataFrame(np.arange(2 * 3).reshape(2, 3), columns=list("ABC")) diff --git a/pandas/tests/frame/methods/test_fillna.py b/pandas/tests/frame/methods/test_fillna.py index d59b70fa91a57..b427611099be3 100644 --- a/pandas/tests/frame/methods/test_fillna.py +++ b/pandas/tests/frame/methods/test_fillna.py @@ -53,10 +53,10 @@ def test_fillna_mixed_float(self, mixed_float_frame): mf = mixed_float_frame.reindex(columns=["A", "B", "D"]) mf.loc[mf.index[-10:], "A"] = np.nan result = mf.fillna(value=0) - _check_mixed_float(result, dtype=dict(C=None)) + _check_mixed_float(result, dtype={"C": None}) result = mf.fillna(method="pad") - _check_mixed_float(result, dtype=dict(C=None)) + _check_mixed_float(result, dtype={"C": None}) def test_fillna_empty(self): # empty frame (GH#2778) @@ -262,7 +262,7 @@ def test_fillna_dtype_conversion(self): tm.assert_frame_equal(result, expected) # equiv of replace - df = DataFrame(dict(A=[1, np.nan], B=[1.0, 2.0])) + df = DataFrame({"A": [1, np.nan], "B": [1.0, 2.0]}) for v in ["", 1, np.nan, 1.0]: expected = df.replace(np.nan, v) result = df.fillna(v) diff --git a/pandas/tests/frame/methods/test_sort_values.py b/pandas/tests/frame/methods/test_sort_values.py index be5f3ee9c8191..b94f54a4819c0 100644 --- a/pandas/tests/frame/methods/test_sort_values.py +++ b/pandas/tests/frame/methods/test_sort_values.py @@ -305,11 +305,11 @@ def test_sort_values_nat_values_in_int_column(self): float_values = (2.0, -1.797693e308) df = DataFrame( - dict(int=int_values, float=float_values), columns=["int", "float"] + {"int": int_values, "float": float_values}, columns=["int", "float"] ) df_reversed = DataFrame( - dict(int=int_values[::-1], float=float_values[::-1]), + {"int": int_values[::-1], "float": float_values[::-1]}, columns=["int", "float"], index=[1, 0], ) @@ -329,12 +329,12 @@ def test_sort_values_nat_values_in_int_column(self): # and now check if NaT is still considered as "na" for datetime64 # columns: df = DataFrame( - dict(datetime=[Timestamp("2016-01-01"), NaT], float=float_values), + {"datetime": [Timestamp("2016-01-01"), NaT], "float": float_values}, columns=["datetime", "float"], ) df_reversed = DataFrame( - dict(datetime=[NaT, Timestamp("2016-01-01")], float=float_values[::-1]), + {"datetime": [NaT, Timestamp("2016-01-01")], "float": float_values[::-1]}, columns=["datetime", "float"], index=[1, 0], ) diff --git a/pandas/tests/frame/methods/test_to_csv.py b/pandas/tests/frame/methods/test_to_csv.py index fbe6d1f595874..4cf0b1febf0af 100644 --- a/pandas/tests/frame/methods/test_to_csv.py +++ b/pandas/tests/frame/methods/test_to_csv.py @@ -38,7 +38,7 @@ class TestDataFrameToCSV: def read_csv(self, path, **kwargs): - params = dict(index_col=0, parse_dates=True) + params = {"index_col": 0, "parse_dates": True} params.update(**kwargs) return pd.read_csv(path, **params) @@ -248,7 +248,7 @@ def make_dtnat_arr(n, nnat=None): # s3=make_dtnjat_arr(chunksize+5,0) with tm.ensure_clean("1.csv") as pth: - df = DataFrame(dict(a=s1, b=s2)) + df = DataFrame({"a": s1, "b": s2}) df.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth).apply(to_datetime) @@ -260,7 +260,7 @@ def _do_test( df, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False ): - kwargs = dict(parse_dates=False) + kwargs = {"parse_dates": False} if cnlvl: if rnlvl is not None: kwargs["index_col"] = list(range(rnlvl)) @@ -291,7 +291,7 @@ def _to_uni(x): recons.index = ix recons = recons.iloc[:, rnlvl - 1 :] - type_map = dict(i="i", f="f", s="O", u="O", dt="O", p="O") + type_map = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"} if r_dtype: if r_dtype == "u": # unicode r_dtype = "O" @@ -738,7 +738,7 @@ def create_cols(name): df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1) # dtype - dtypes = dict() + dtypes = {} for n, dtype in [ ("float", np.float64), ("int", np.int64), diff --git a/pandas/tests/frame/methods/test_to_records.py b/pandas/tests/frame/methods/test_to_records.py index d9c999c9119f4..4d40f191a904b 100644 --- a/pandas/tests/frame/methods/test_to_records.py +++ b/pandas/tests/frame/methods/test_to_records.py @@ -131,7 +131,7 @@ def test_to_records_with_categorical(self): [ # No dtypes --> default to array dtypes. ( - dict(), + {}, np.rec.array( [(0, 1, 0.2, "a"), (1, 2, 1.5, "bc")], dtype=[("index", "