From 3edb890f8010802df9bc070f8d2d64b95af39e7e Mon Sep 17 00:00:00 2001 From: Daniel Saxton Date: Sat, 25 Apr 2020 09:23:57 -0500 Subject: [PATCH] CLN: Pass numpy args as kwargs --- pandas/compat/numpy/function.py | 7 ++++++- pandas/core/arrays/numpy_.py | 30 ++++-------------------------- 2 files changed, 10 insertions(+), 27 deletions(-) diff --git a/pandas/compat/numpy/function.py b/pandas/compat/numpy/function.py index 30768f9bf2b06..d7a14c28cc9ca 100644 --- a/pandas/compat/numpy/function.py +++ b/pandas/compat/numpy/function.py @@ -251,11 +251,16 @@ def validate_cum_func_with_skipna(skipna, args, kwargs, name): STAT_FUNC_DEFAULTS["dtype"] = None STAT_FUNC_DEFAULTS["out"] = None -PROD_DEFAULTS = SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy() +SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy() SUM_DEFAULTS["axis"] = None SUM_DEFAULTS["keepdims"] = False SUM_DEFAULTS["initial"] = None +PROD_DEFAULTS = STAT_FUNC_DEFAULTS.copy() +PROD_DEFAULTS["axis"] = None +PROD_DEFAULTS["keepdims"] = False +PROD_DEFAULTS["initial"] = None + MEDIAN_DEFAULTS = STAT_FUNC_DEFAULTS.copy() MEDIAN_DEFAULTS["overwrite_input"] = False MEDIAN_DEFAULTS["keepdims"] = False diff --git a/pandas/core/arrays/numpy_.py b/pandas/core/arrays/numpy_.py index e9950e0edaffb..6806ed2afcf5c 100644 --- a/pandas/core/arrays/numpy_.py +++ b/pandas/core/arrays/numpy_.py @@ -365,36 +365,14 @@ def max(self, skipna: bool = True, **kwargs) -> Scalar: ) return result - def sum( - self, - axis=None, - dtype=None, - out=None, - keepdims=False, - initial=None, - skipna=True, - min_count=0, - ): - nv.validate_sum( - (), dict(dtype=dtype, out=out, keepdims=keepdims, initial=initial) - ) + def sum(self, axis=None, skipna=True, min_count=0, **kwargs) -> Scalar: + nv.validate_sum((), kwargs) return nanops.nansum( self._ndarray, axis=axis, skipna=skipna, min_count=min_count ) - def prod( - self, - axis=None, - dtype=None, - out=None, - keepdims=False, - initial=None, - skipna=True, - min_count=0, - ): - nv.validate_prod( - (), dict(dtype=dtype, out=out, keepdims=keepdims, initial=initial) - ) + def prod(self, axis=None, skipna=True, min_count=0, **kwargs) -> Scalar: + nv.validate_prod((), kwargs) return nanops.nanprod( self._ndarray, axis=axis, skipna=skipna, min_count=min_count )