diff --git a/doc/source/user_guide/reshaping.rst b/doc/source/user_guide/reshaping.rst index bbec9a770477d..58733b852e3a1 100644 --- a/doc/source/user_guide/reshaping.rst +++ b/doc/source/user_guide/reshaping.rst @@ -17,7 +17,6 @@ Reshaping by pivoting DataFrame objects :suppress: import pandas._testing as tm - tm.N = 3 def unpivot(frame): N, K = frame.shape @@ -27,7 +26,7 @@ Reshaping by pivoting DataFrame objects columns = ['date', 'variable', 'value'] return pd.DataFrame(data, columns=columns) - df = unpivot(tm.makeTimeDataFrame()) + df = unpivot(tm.makeTimeDataFrame(3)) Data is often stored in so-called "stacked" or "record" format: @@ -42,9 +41,6 @@ For the curious here is how the above ``DataFrame`` was created: import pandas._testing as tm - tm.N = 3 - - def unpivot(frame): N, K = frame.shape data = {'value': frame.to_numpy().ravel('F'), @@ -53,7 +49,7 @@ For the curious here is how the above ``DataFrame`` was created: return pd.DataFrame(data, columns=['date', 'variable', 'value']) - df = unpivot(tm.makeTimeDataFrame()) + df = unpivot(tm.makeTimeDataFrame(3)) To select out everything for variable ``A`` we could do: diff --git a/pandas/_testing.py b/pandas/_testing.py index 7ebf2c282f8c9..3a12eba5bf881 100644 --- a/pandas/_testing.py +++ b/pandas/_testing.py @@ -69,8 +69,8 @@ lzma = _import_lzma() -N = 30 -K = 4 +_N = 30 +_K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode @@ -1794,45 +1794,45 @@ def all_timeseries_index_generator(k=10): # make series def makeFloatSeries(name=None): - index = makeStringIndex(N) - return Series(randn(N), index=index, name=name) + index = makeStringIndex(_N) + return Series(randn(_N), index=index, name=name) def makeStringSeries(name=None): - index = makeStringIndex(N) - return Series(randn(N), index=index, name=name) + index = makeStringIndex(_N) + return Series(randn(_N), index=index, name=name) def makeObjectSeries(name=None): - data = makeStringIndex(N) + data = makeStringIndex(_N) data = Index(data, dtype=object) - index = makeStringIndex(N) + index = makeStringIndex(_N) return Series(data, index=index, name=name) def getSeriesData(): - index = makeStringIndex(N) - return {c: Series(randn(N), index=index) for c in getCols(K)} + index = makeStringIndex(_N) + return {c: Series(randn(_N), index=index) for c in getCols(_K)} def makeTimeSeries(nper=None, freq="B", name=None): if nper is None: - nper = N + nper = _N return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name) def makePeriodSeries(nper=None, name=None): if nper is None: - nper = N + nper = _N return Series(randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq="B"): - return {c: makeTimeSeries(nper, freq) for c in getCols(K)} + return {c: makeTimeSeries(nper, freq) for c in getCols(_K)} def getPeriodData(nper=None): - return {c: makePeriodSeries(nper) for c in getCols(K)} + return {c: makePeriodSeries(nper) for c in getCols(_K)} # make frame