From 4b2119a11a9a3b020fe83709e56aad1d38175eff Mon Sep 17 00:00:00 2001 From: Tulio Casagrande Date: Thu, 11 Jan 2018 15:56:49 -0200 Subject: [PATCH] DOC: Improve DataFrame.select_dtypes examples --- pandas/core/frame.py | 39 ++++++++++++++++++++------------------- 1 file changed, 20 insertions(+), 19 deletions(-) diff --git a/pandas/core/frame.py b/pandas/core/frame.py index a8c4053850548..43df2c48fcf58 100644 --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -2417,17 +2417,18 @@ def select_dtypes(self, include=None, exclude=None): Notes ----- - * To select all *numeric* types use the numpy dtype ``numpy.number`` + * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy `__ - * To select datetimes, use np.datetime64, 'datetime' or 'datetime64' - * To select timedeltas, use np.timedelta64, 'timedelta' or - 'timedelta64' - * To select Pandas categorical dtypes, use 'category' - * To select Pandas datetimetz dtypes, use 'datetimetz' (new in 0.20.0), - or a 'datetime64[ns, tz]' string + * To select datetimes, use ``np.datetime64``, ``'datetime'`` or + ``'datetime64'`` + * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or + ``'timedelta64'`` + * To select Pandas categorical dtypes, use ``'category'`` + * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in + 0.20.0) or ``'datetime64[ns, tz]'`` Examples -------- @@ -2436,12 +2437,12 @@ def select_dtypes(self, include=None, exclude=None): ... 'c': [1.0, 2.0] * 3}) >>> df a b c - 0 0.3962 True 1 - 1 0.1459 False 2 - 2 0.2623 True 1 - 3 0.0764 False 2 - 4 -0.9703 True 1 - 5 -1.2094 False 2 + 0 0.3962 True 1.0 + 1 0.1459 False 2.0 + 2 0.2623 True 1.0 + 3 0.0764 False 2.0 + 4 -0.9703 True 1.0 + 5 -1.2094 False 2.0 >>> df.select_dtypes(include='bool') c 0 True @@ -2452,12 +2453,12 @@ def select_dtypes(self, include=None, exclude=None): 5 False >>> df.select_dtypes(include=['float64']) c - 0 1 - 1 2 - 2 1 - 3 2 - 4 1 - 5 2 + 0 1.0 + 1 2.0 + 2 1.0 + 3 2.0 + 4 1.0 + 5 2.0 >>> df.select_dtypes(exclude=['floating']) b 0 True