diff --git a/doc/source/basics.rst b/doc/source/basics.rst index 9ecee2ea86bd1..68ab07bc3df91 100644 --- a/doc/source/basics.rst +++ b/doc/source/basics.rst @@ -483,11 +483,11 @@ optional ``level`` parameter which applies only if the object has a ``mode``, Mode ``abs``, Absolute Value ``prod``, Product of values - ``std``, Unbiased standard deviation + ``std``, Bessel-corrected sample standard deviation ``var``, Unbiased variance - ``sem``, Unbiased standard error of the mean - ``skew``, Unbiased skewness (3rd moment) - ``kurt``, Unbiased kurtosis (4th moment) + ``sem``, Standard error of the mean + ``skew``, Sample skewness (3rd moment) + ``kurt``, Sample kurtosis (4th moment) ``quantile``, Sample quantile (value at %) ``cumsum``, Cumulative sum ``cumprod``, Cumulative product diff --git a/doc/source/computation.rst b/doc/source/computation.rst index 097898f027429..ed3251efc3656 100644 --- a/doc/source/computation.rst +++ b/doc/source/computation.rst @@ -309,10 +309,10 @@ We provide a number of the common statistical functions: :meth:`~Rolling.median`, Arithmetic median of values :meth:`~Rolling.min`, Minimum :meth:`~Rolling.max`, Maximum - :meth:`~Rolling.std`, Unbiased standard deviation + :meth:`~Rolling.std`, Bessel-corrected sample standard deviation :meth:`~Rolling.var`, Unbiased variance - :meth:`~Rolling.skew`, Unbiased skewness (3rd moment) - :meth:`~Rolling.kurt`, Unbiased kurtosis (4th moment) + :meth:`~Rolling.skew`, Sample skewness (3rd moment) + :meth:`~Rolling.kurt`, Sample kurtosis (4th moment) :meth:`~Rolling.quantile`, Sample quantile (value at %) :meth:`~Rolling.apply`, Generic apply :meth:`~Rolling.cov`, Unbiased covariance (binary) diff --git a/pandas/core/generic.py b/pandas/core/generic.py index ce156232ed698..1bea2fb4fcf95 100644 --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -4783,7 +4783,7 @@ def mad(self, axis=None, skipna=None, level=None): nanops.nanvar) cls.std = _make_stat_function_ddof( 'std', name, name2, axis_descr, - "Return unbiased standard deviation over requested axis." + "Return sample standard deviation over requested axis." "\n\nNormalized by N-1 by default. This can be changed using the " "ddof argument", nanops.nanstd)