Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import matplotlib.pyplot as plt
# I am using Jupyter. and my backend is notebook, for this, I use %matplotlib notebook
data = {'y': [1,2,3,4,5,6,7,8,9,10],
'x': [1,2,3,4,5,6,7,8,9,10],
'layer' : ['a','a','a','b','b','b','c','c','c','c']}
df = pd.DataFrame(data)
plt.figure()
df.groupby("layer").plot(x='x', y='y', ax= plt.gca(), kind='line') # this changes the color automatically
plt.figure()
df.groupby("layer").plot(x='x', y='y', ax= plt.gca(), kind='scatter') # this does not
Issue Description
I was trying to write an asnwer on stackoverflow and I noticed the following behaviour:
Using df.groupby("layer").plot(x='x', y='y', ax= plt.gca(), kind='line')
changes the color of every new group automatically.
This is however not seen when using kind="scatter"
.
I think my version is a bit older than the latest one, but I could not find any similar issue on github.
Expected Behavior
I expect that the color should also change for the scatter kind. For this, here is the output of the following code:
plt.figure()
for layer in df['layer'].unique(): # group by layer
subDf = df[df['layer'] == layer] # get subset of dataframe
plt.scatter(subDf['x'], subDf['y'], label=layer) # plot
# add labels and such
plt.xlabel('x')
plt.ylabel('y')
Installed Versions
commit : 0f43794
python : 3.11.5.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.22631
machine : AMD64
processor : Intel64 Family 6 Model 186 Stepping 3, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 2.0.3
numpy : 1.24.3
pytz : 2023.3.post1
dateutil : 2.8.2
setuptools : 68.0.0
pip : 23.2.1
Cython : 3.0.6
pytest : 7.4.0
hypothesis : None
sphinx : 5.0.2
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : 1.1
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.15.0
pandas_datareader: None
bs4 : 4.12.2
bottleneck : 1.3.5
brotli :
fastparquet : None
fsspec : 2023.4.0
gcsfs : None
matplotlib : 3.7.2
numba : 0.57.1
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : 11.0.0
pyreadstat : None
pyxlsb : None
s3fs : 2023.4.0
scipy : 1.11.1
snappy :
sqlalchemy : 1.4.39
tables : 3.8.0
tabulate : 0.8.10
xarray : 2023.6.0
xlrd : None
zstandard : 0.19.0
tzdata : 2023.3
qtpy : 2.2.0
pyqt5 : None