@@ -35,23 +35,24 @@ def test_contains(self, data, data_missing):
35
35
# the settled on rule is: `nan_like in arr` is True if nan_like is
36
36
# arr.dtype.na_value and arr.isna().any() is True. Else the check returns False.
37
37
38
- for this_data in [data , data_missing ]:
39
- scalar = this_data [~ this_data .isna ()][0 ]
40
-
41
- assert scalar in this_data
42
-
43
- na_value = this_data .dtype .na_value
44
-
45
- if this_data .isna ().any ():
46
- assert na_value in this_data
47
- else :
48
- assert na_value not in this_data
49
-
50
- # this_data can never contain other nan-likes than na_value
51
- for na_value_type in {None , np .nan , pd .NA , pd .NaT }:
52
- if na_value_type is na_value :
53
- continue
54
- assert na_value_type not in this_data
38
+ na_value = data .dtype .na_value
39
+ # ensure data without missing values
40
+ data = data [~ data .isna ()]
41
+
42
+ # first elements are non-missing
43
+ assert data [0 ] in data
44
+ assert data_missing [0 ] in data_missing
45
+
46
+ # check the presence of na_value
47
+ assert na_value in data_missing
48
+ assert na_value not in data
49
+
50
+ # the data can never contain other nan-likes than na_value
51
+ for na_value_type in {None , np .nan , pd .NA , pd .NaT }:
52
+ if na_value_type is na_value :
53
+ continue
54
+ assert na_value_type not in data
55
+ assert na_value_type not in data_missing
55
56
56
57
def test_memory_usage (self , data ):
57
58
s = pd .Series (data )
0 commit comments