@@ -269,77 +269,70 @@ def test_resample_quantile(series):
269
269
tm .assert_series_equal (result , expected )
270
270
271
271
272
- @all_ts
273
272
@pytest .mark .parametrize (
274
- "freq, result_name, result_data, result_index, result_freq" ,
273
+ "_index_factory,_series_name,_index_start,_index_end" , [DATE_RANGE , PERIOD_RANGE ]
274
+ )
275
+ @pytest .mark .parametrize (
276
+ "freq, result_dict" ,
275
277
[
276
278
(
277
279
"D" ,
278
- "dti" ,
279
- [1.0 ] * 5 + [np .nan ] * 5 ,
280
- ["2005-01-{}" .format (i ) for i in range (1 , 11 )],
281
- "D" ,
282
- ),
283
- (
284
- "D" ,
285
- "pi" ,
286
- [1.0 ] * 5 + [np .nan ] * 5 ,
287
- ["2005-01-{}" .format (i ) for i in range (1 , 11 )],
288
- "D" ,
289
- ),
290
- (
291
- "D" ,
292
- "tdi" ,
293
- [1.0 ] * 5 + [np .nan ] * 5 ,
294
- ["{} days" .format (i ) for i in range (1 , 11 )],
295
- "D" ,
280
+ {
281
+ "dti" : {
282
+ "data" : [1.0 ] * 5 + [np .nan ] * 5 ,
283
+ "index" : DatetimeIndex (
284
+ ["2005-01-{}" .format (i ) for i in range (1 , 11 )], freq = "D"
285
+ ),
286
+ },
287
+ "pi" : {
288
+ "data" : [1.0 ] * 5 + [np .nan ] * 5 ,
289
+ "index" : PeriodIndex (
290
+ ["2005-01-{}" .format (i ) for i in range (1 , 11 )], freq = "D"
291
+ ),
292
+ },
293
+ },
296
294
),
297
295
(
298
296
"W" ,
299
- "dti" ,
300
- [2.0 , 3.0 , np .nan ],
301
- ["2005-01-02" , "2005-01-09" , "2005-01-16" ],
302
- "W-SUN" ,
297
+ {
298
+ "dti" : {
299
+ "data" : [2.0 , 3.0 , np .nan ],
300
+ "index" : DatetimeIndex (
301
+ ["2005-01-02" , "2005-01-09" , "2005-01-16" ], freq = "W-SUN"
302
+ ),
303
+ },
304
+ "pi" : {
305
+ "data" : [2.0 , 3.0 , np .nan ],
306
+ "index" : PeriodIndex (
307
+ [
308
+ "2004-12-27/2005-01-02" ,
309
+ "2005-01-03/2005-01-09" ,
310
+ "2005-01-10/2005-01-16" ,
311
+ ],
312
+ freq = "W-SUN" ,
313
+ ),
314
+ },
315
+ },
303
316
),
304
317
(
305
- "W" ,
306
- "pi" ,
307
- [2.0 , 3.0 , np .nan ],
308
- ["2004-12-27/2005-01-02" , "2005-01-03/2005-01-09" , "2005-01-10/2005-01-16" ],
309
- "W-SUN" ,
318
+ "M" ,
319
+ {
320
+ "dti" : {
321
+ "data" : [5.0 ],
322
+ "index" : DatetimeIndex (["2005-01-31" ], freq = "M" ),
323
+ },
324
+ "pi" : {"data" : [5.0 ], "index" : PeriodIndex (["2005-01" ], freq = "M" )},
325
+ },
310
326
),
311
- ("W" , "" , "" , "" , "" ),
312
- ("M" , "dti" , [5.0 ], ["2005-01-31" ], "M" ),
313
- ("M" , "pi" , [5.0 ], ["2005-01" ], "M" ),
314
- ("M" , "" , "" , "" , "" ),
315
327
],
316
328
)
317
- def test_resample_sum (
318
- series , freq , result_name , result_data , result_index , result_freq
319
- ):
329
+ def test_resample_sum (series , freq , result_dict ):
320
330
# GH 19974
321
331
series [:5 ] = 1
322
332
series [5 :] = np .nan
333
+ result = series .resample (freq ).sum (min_count = 1 )
323
334
324
- if isinstance (series .index , TimedeltaIndex ) and freq != "D" :
325
- msg = ".* is a non-fixed frequency"
326
- with pytest .raises (ValueError , match = msg ):
327
- result = series .resample (freq ).sum (min_count = 1 )
328
-
329
- else :
330
- result = series .resample (freq ).sum (min_count = 1 )
331
-
332
- if isinstance (series .index , DatetimeIndex ) and result_name == "dti" :
333
- index = DatetimeIndex (result_index , freq = result_freq )
334
- expected = Series (result_data , index , name = result_name )
335
- tm .assert_series_equal (result , expected )
336
-
337
- if isinstance (series .index , PeriodIndex ) and result_name == "pi" :
338
- index = PeriodIndex (result_index , freq = result_freq )
339
- expected = Series (result_data , index , name = result_name )
340
- tm .assert_series_equal (result , expected )
341
-
342
- if isinstance (series .index , TimedeltaIndex ) and result_name == "tdi" :
343
- index = TimedeltaIndex (result_index , freq = result_freq )
344
- expected = Series (result_data , index , name = result_name )
345
- tm .assert_series_equal (result , expected )
335
+ key = result .name
336
+ index = result_dict [key ]["index" ]
337
+ expected = Series (result_dict [key ]["data" ], index , name = key )
338
+ tm .assert_series_equal (result , expected )
0 commit comments