|
1 | 1 | import numpy as np
|
2 | 2 | import pytest
|
3 | 3 |
|
4 |
| -from pandas import ( |
5 |
| - DataFrame, |
6 |
| - Timestamp, |
7 |
| -) |
| 4 | +from pandas import DataFrame, Timestamp, date_range, NaT |
8 | 5 | import pandas._testing as tm
|
9 | 6 |
|
10 | 7 |
|
@@ -41,3 +38,37 @@ def test_to_numpy_mixed_dtype_to_str(self):
|
41 | 38 | result = df.to_numpy(dtype=str)
|
42 | 39 | expected = np.array([["2020-01-01 00:00:00", "100.0"]], dtype=str)
|
43 | 40 | tm.assert_numpy_array_equal(result, expected)
|
| 41 | + |
| 42 | + def test_to_numpy_datetime_with_na(self): |
| 43 | + # GH #53115 |
| 44 | + dti = date_range("2016-01-01", periods=3) |
| 45 | + df = DataFrame(dti) |
| 46 | + df.iloc[0, 0] = NaT |
| 47 | + expected = np.array([[np.nan], [1.45169280e18], [1.45177920e18]]) |
| 48 | + assert np.allclose( |
| 49 | + df.to_numpy(float, na_value=np.nan), expected, equal_nan=True |
| 50 | + ) |
| 51 | + |
| 52 | + df = DataFrame( |
| 53 | + { |
| 54 | + "a": [Timestamp("1970-01-01"), Timestamp("1970-01-02"), NaT], |
| 55 | + "b": [ |
| 56 | + Timestamp("1970-01-01"), |
| 57 | + np.nan, |
| 58 | + Timestamp("1970-01-02"), |
| 59 | + ], |
| 60 | + "c": [ |
| 61 | + 1, |
| 62 | + np.nan, |
| 63 | + 2, |
| 64 | + ], |
| 65 | + } |
| 66 | + ) |
| 67 | + arr = np.array( |
| 68 | + [ |
| 69 | + [0.00e00, 0.00e00, 1.00e00], |
| 70 | + [8.64e04, np.nan, np.nan], |
| 71 | + [np.nan, 8.64e04, 2.00e00], |
| 72 | + ] |
| 73 | + ) |
| 74 | + assert np.allclose(df.to_numpy(float, na_value=np.nan), arr, equal_nan=True) |
0 commit comments