Skip to content

Commit d3ffc91

Browse files
authored
REF: .values -> ._values (#32947)
1 parent 55636e6 commit d3ffc91

22 files changed

+46
-47
lines changed

pandas/core/algorithms.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -700,7 +700,7 @@ def value_counts(
700700
result = result.sort_index()
701701

702702
# if we are dropna and we have NO values
703-
if dropna and (result.values == 0).all():
703+
if dropna and (result._values == 0).all():
704704
result = result.iloc[0:0]
705705

706706
# normalizing is by len of all (regardless of dropna)
@@ -713,7 +713,7 @@ def value_counts(
713713
# handle Categorical and sparse,
714714
result = Series(values)._values.value_counts(dropna=dropna)
715715
result.name = name
716-
counts = result.values
716+
counts = result._values
717717

718718
else:
719719
keys, counts = _value_counts_arraylike(values, dropna)
@@ -823,7 +823,7 @@ def mode(values, dropna: bool = True) -> "Series":
823823
# categorical is a fast-path
824824
if is_categorical_dtype(values):
825825
if isinstance(values, Series):
826-
return Series(values.values.mode(dropna=dropna), name=values.name)
826+
return Series(values._values.mode(dropna=dropna), name=values.name)
827827
return values.mode(dropna=dropna)
828828

829829
if dropna and needs_i8_conversion(values.dtype):

pandas/core/arrays/datetimelike.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -905,7 +905,7 @@ def value_counts(self, dropna=False):
905905
index = Index(
906906
cls(result.index.view("i8"), dtype=self.dtype), name=result.index.name
907907
)
908-
return Series(result.values, index=index, name=result.name)
908+
return Series(result._values, index=index, name=result.name)
909909

910910
def map(self, mapper):
911911
# TODO(GH-23179): Add ExtensionArray.map

pandas/core/arrays/interval.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -152,7 +152,7 @@ class IntervalArray(IntervalMixin, ExtensionArray):
152152
def __new__(cls, data, closed=None, dtype=None, copy=False, verify_integrity=True):
153153

154154
if isinstance(data, ABCSeries) and is_interval_dtype(data):
155-
data = data.values
155+
data = data._values
156156

157157
if isinstance(data, (cls, ABCIntervalIndex)):
158158
left = data.left

pandas/core/arrays/masked.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -244,11 +244,11 @@ def value_counts(self, dropna: bool = True) -> "Series":
244244
# TODO(extension)
245245
# if we have allow Index to hold an ExtensionArray
246246
# this is easier
247-
index = value_counts.index.values.astype(object)
247+
index = value_counts.index._values.astype(object)
248248

249249
# if we want nans, count the mask
250250
if dropna:
251-
counts = value_counts.values
251+
counts = value_counts._values
252252
else:
253253
counts = np.empty(len(value_counts) + 1, dtype="int64")
254254
counts[:-1] = value_counts

pandas/core/base.py

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -656,7 +656,7 @@ def item(self):
656656
):
657657
# numpy returns ints instead of datetime64/timedelta64 objects,
658658
# which we need to wrap in Timestamp/Timedelta/Period regardless.
659-
return self.values.item()
659+
return self._values.item()
660660

661661
if len(self) == 1:
662662
return next(iter(self))
@@ -1128,10 +1128,8 @@ def _map_values(self, mapper, na_action=None):
11281128
# use the built in categorical series mapper which saves
11291129
# time by mapping the categories instead of all values
11301130
return self._values.map(mapper)
1131-
if is_extension_array_dtype(self.dtype):
1132-
values = self._values
1133-
else:
1134-
values = self.values
1131+
1132+
values = self._values
11351133

11361134
indexer = mapper.index.get_indexer(values)
11371135
new_values = algorithms.take_1d(mapper._values, indexer)

pandas/core/common.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -213,7 +213,7 @@ def asarray_tuplesafe(values, dtype=None):
213213
if not (isinstance(values, (list, tuple)) or hasattr(values, "__array__")):
214214
values = list(values)
215215
elif isinstance(values, ABCIndexClass):
216-
return values.values
216+
return values._values
217217

218218
if isinstance(values, list) and dtype in [np.object_, object]:
219219
return construct_1d_object_array_from_listlike(values)

pandas/core/dtypes/cast.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -888,7 +888,7 @@ def astype_nansafe(arr, dtype, copy: bool = True, skipna: bool = False):
888888
elif is_timedelta64_dtype(dtype):
889889
from pandas import to_timedelta
890890

891-
return astype_nansafe(to_timedelta(arr).values, dtype, copy=copy)
891+
return astype_nansafe(to_timedelta(arr)._values, dtype, copy=copy)
892892

893893
if dtype.name in ("datetime64", "timedelta64"):
894894
msg = (

pandas/core/dtypes/missing.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -229,7 +229,7 @@ def _isna_ndarraylike(obj):
229229
if not is_extension:
230230
# Avoid accessing `.values` on things like
231231
# PeriodIndex, which may be expensive.
232-
values = getattr(obj, "values", obj)
232+
values = getattr(obj, "_values", obj)
233233
else:
234234
values = obj
235235

@@ -270,7 +270,7 @@ def _isna_ndarraylike(obj):
270270

271271

272272
def _isna_ndarraylike_old(obj):
273-
values = getattr(obj, "values", obj)
273+
values = getattr(obj, "_values", obj)
274274
dtype = values.dtype
275275

276276
if is_string_dtype(dtype):

pandas/core/generic.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -7071,7 +7071,7 @@ def asof(self, where, subset=None):
70717071

70727072
return Series(np.nan, index=self.columns, name=where[0])
70737073

7074-
locs = self.index.asof_locs(where, ~(nulls.values))
7074+
locs = self.index.asof_locs(where, ~(nulls._values))
70757075

70767076
# mask the missing
70777077
missing = locs == -1
@@ -7230,7 +7230,7 @@ def _clip_with_scalar(self, lower, upper, inplace: bool_t = False):
72307230
raise ValueError("Cannot use an NA value as a clip threshold")
72317231

72327232
result = self
7233-
mask = isna(self.values)
7233+
mask = isna(self._values)
72347234

72357235
with np.errstate(all="ignore"):
72367236
if upper is not None:
@@ -8604,7 +8604,7 @@ def _where(
86048604

86058605
if self.ndim == 1:
86068606

8607-
icond = cond.values
8607+
icond = cond._values
86088608

86098609
# GH 2745 / GH 4192
86108610
# treat like a scalar

pandas/core/indexes/accessors.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -321,7 +321,7 @@ def __new__(cls, data: "Series"):
321321
orig.array,
322322
name=orig.name,
323323
copy=False,
324-
dtype=orig.values.categories.dtype,
324+
dtype=orig._values.categories.dtype,
325325
)
326326

327327
if is_datetime64_dtype(data.dtype):

pandas/core/indexes/datetimes.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -287,7 +287,7 @@ def _is_dates_only(self) -> bool:
287287
"""
288288
from pandas.io.formats.format import _is_dates_only
289289

290-
return _is_dates_only(self.values) and self.tz is None
290+
return self.tz is None and _is_dates_only(self._values)
291291

292292
def __reduce__(self):
293293

pandas/core/indexes/interval.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1104,9 +1104,9 @@ def func(self, other, sort=sort):
11041104

11051105
# GH 19101: ensure empty results have correct dtype
11061106
if result.empty:
1107-
result = result.values.astype(self.dtype.subtype)
1107+
result = result._values.astype(self.dtype.subtype)
11081108
else:
1109-
result = result.values
1109+
result = result._values
11101110

11111111
return type(self).from_tuples(result, closed=self.closed, name=result_name)
11121112

pandas/core/indexes/period.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -312,7 +312,7 @@ def _is_comparable_dtype(self, dtype: DtypeObj) -> bool:
312312

313313
def _mpl_repr(self):
314314
# how to represent ourselves to matplotlib
315-
return self.astype(object).values
315+
return self.astype(object)._values
316316

317317
@property
318318
def _formatter_func(self):
@@ -389,7 +389,7 @@ def asof_locs(self, where, mask: np.ndarray) -> np.ndarray:
389389
"""
390390
where_idx = where
391391
if isinstance(where_idx, DatetimeIndex):
392-
where_idx = PeriodIndex(where_idx.values, freq=self.freq)
392+
where_idx = PeriodIndex(where_idx._values, freq=self.freq)
393393
elif not isinstance(where_idx, PeriodIndex):
394394
raise TypeError("asof_locs `where` must be DatetimeIndex or PeriodIndex")
395395
elif where_idx.freq != self.freq:

pandas/core/ops/array_ops.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ def comp_method_OBJECT_ARRAY(op, x, y):
4545
y = y.astype(np.object_)
4646

4747
if isinstance(y, (ABCSeries, ABCIndex)):
48-
y = y.values
48+
y = y._values
4949

5050
if x.shape != y.shape:
5151
raise ValueError("Shapes must match", x.shape, y.shape)

pandas/core/resample.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1596,7 +1596,7 @@ def _get_period_bins(self, ax):
15961596
def _take_new_index(obj, indexer, new_index, axis=0):
15971597

15981598
if isinstance(obj, ABCSeries):
1599-
new_values = algos.take_1d(obj.values, indexer)
1599+
new_values = algos.take_1d(obj._values, indexer)
16001600
return obj._constructor(new_values, index=new_index, name=obj.name)
16011601
elif isinstance(obj, ABCDataFrame):
16021602
if axis == 1:

pandas/core/reshape/melt.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -105,12 +105,12 @@ def melt(
105105
if is_extension_array_dtype(id_data):
106106
id_data = concat([id_data] * K, ignore_index=True)
107107
else:
108-
id_data = np.tile(id_data.values, K)
108+
id_data = np.tile(id_data._values, K)
109109
mdata[col] = id_data
110110

111111
mcolumns = id_vars + var_name + [value_name]
112112

113-
mdata[value_name] = frame.values.ravel("F")
113+
mdata[value_name] = frame._values.ravel("F")
114114
for i, col in enumerate(var_name):
115115
# asanyarray will keep the columns as an Index
116116
mdata[col] = np.asanyarray(frame.columns._get_level_values(i)).repeat(N)
@@ -170,13 +170,13 @@ def lreshape(data: DataFrame, groups, dropna: bool = True, label=None) -> DataFr
170170
pivot_cols = []
171171

172172
for target, names in zip(keys, values):
173-
to_concat = [data[col].values for col in names]
173+
to_concat = [data[col]._values for col in names]
174174

175175
mdata[target] = concat_compat(to_concat)
176176
pivot_cols.append(target)
177177

178178
for col in id_cols:
179-
mdata[col] = np.tile(data[col].values, K)
179+
mdata[col] = np.tile(data[col]._values, K)
180180

181181
if dropna:
182182
mask = np.ones(len(mdata[pivot_cols[0]]), dtype=bool)

pandas/core/reshape/merge.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1347,7 +1347,7 @@ def _convert_to_mulitindex(index) -> MultiIndex:
13471347
if isinstance(index, MultiIndex):
13481348
return index
13491349
else:
1350-
return MultiIndex.from_arrays([index.values], names=[index.name])
1350+
return MultiIndex.from_arrays([index._values], names=[index.name])
13511351

13521352
# For multi-multi joins with one overlapping level,
13531353
# the returned index if of type Index
@@ -1672,10 +1672,10 @@ def flip(xs) -> np.ndarray:
16721672

16731673
# values to compare
16741674
left_values = (
1675-
self.left.index.values if self.left_index else self.left_join_keys[-1]
1675+
self.left.index._values if self.left_index else self.left_join_keys[-1]
16761676
)
16771677
right_values = (
1678-
self.right.index.values if self.right_index else self.right_join_keys[-1]
1678+
self.right.index._values if self.right_index else self.right_join_keys[-1]
16791679
)
16801680
tolerance = self.tolerance
16811681

pandas/core/reshape/pivot.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -456,10 +456,10 @@ def pivot(data: "DataFrame", index=None, columns=None, values=None) -> "DataFram
456456
if is_list_like(values) and not isinstance(values, tuple):
457457
# Exclude tuple because it is seen as a single column name
458458
indexed = data._constructor(
459-
data[values].values, index=index, columns=values
459+
data[values]._values, index=index, columns=values
460460
)
461461
else:
462-
indexed = data._constructor_sliced(data[values].values, index=index)
462+
indexed = data._constructor_sliced(data[values]._values, index=index)
463463
return indexed.unstack(columns)
464464

465465

pandas/core/reshape/reshape.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -541,9 +541,9 @@ def factorize(index):
541541
)
542542

543543
if frame._is_homogeneous_type:
544-
# For homogeneous EAs, frame.values will coerce to object. So
544+
# For homogeneous EAs, frame._values will coerce to object. So
545545
# we concatenate instead.
546-
dtypes = list(frame.dtypes.values)
546+
dtypes = list(frame.dtypes._values)
547547
dtype = dtypes[0]
548548

549549
if is_extension_array_dtype(dtype):
@@ -554,11 +554,11 @@ def factorize(index):
554554
new_values = _reorder_for_extension_array_stack(new_values, N, K)
555555
else:
556556
# homogeneous, non-EA
557-
new_values = frame.values.ravel()
557+
new_values = frame._values.ravel()
558558

559559
else:
560560
# non-homogeneous
561-
new_values = frame.values.ravel()
561+
new_values = frame._values.ravel()
562562

563563
if dropna:
564564
mask = notna(new_values)

pandas/core/series.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1716,7 +1716,7 @@ def count(self, level=None):
17161716
level_codes[mask] = cnt = len(lev)
17171717
lev = lev.insert(cnt, lev._na_value)
17181718

1719-
obs = level_codes[notna(self.values)]
1719+
obs = level_codes[notna(self._values)]
17201720
out = np.bincount(obs, minlength=len(lev) or None)
17211721
return self._constructor(out, index=lev, dtype="int64").__finalize__(self)
17221722

@@ -2718,6 +2718,7 @@ def combine(self, other, func, fill_value=None) -> "Series":
27182718
if is_categorical_dtype(self.dtype):
27192719
pass
27202720
elif is_extension_array_dtype(self.dtype):
2721+
# TODO: can we do this for only SparseDtype?
27212722
# The function can return something of any type, so check
27222723
# if the type is compatible with the calling EA.
27232724
new_values = try_cast_to_ea(self._values, new_values)
@@ -3852,7 +3853,7 @@ def f(x):
38523853
# GH#23179 some EAs do not have `map`
38533854
mapped = self._values.map(f)
38543855
else:
3855-
values = self.astype(object).values
3856+
values = self.astype(object)._values
38563857
mapped = lib.map_infer(values, f, convert=convert_dtype)
38573858

38583859
if len(mapped) and isinstance(mapped[0], Series):

pandas/core/strings.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -205,7 +205,7 @@ def _map_object(f, arr, na_mask=False, na_value=np.nan, dtype=object):
205205
return np.ndarray(0, dtype=dtype)
206206

207207
if isinstance(arr, ABCSeries):
208-
arr = arr.values
208+
arr = arr._values # TODO: extract_array?
209209
if not isinstance(arr, np.ndarray):
210210
arr = np.asarray(arr, dtype=object)
211211
if na_mask:
@@ -2034,8 +2034,8 @@ def __init__(self, data):
20342034
self._is_categorical = is_categorical_dtype(data)
20352035
self._is_string = data.dtype.name == "string"
20362036

2037-
# .values.categories works for both Series/Index
2038-
self._parent = data.values.categories if self._is_categorical else data
2037+
# ._values.categories works for both Series/Index
2038+
self._parent = data._values.categories if self._is_categorical else data
20392039
# save orig to blow up categoricals to the right type
20402040
self._orig = data
20412041
self._freeze()
@@ -2236,7 +2236,7 @@ def _get_series_list(self, others):
22362236
if isinstance(others, ABCSeries):
22372237
return [others]
22382238
elif isinstance(others, ABCIndexClass):
2239-
return [Series(others.values, index=others)]
2239+
return [Series(others._values, index=others)]
22402240
elif isinstance(others, ABCDataFrame):
22412241
return [others[x] for x in others]
22422242
elif isinstance(others, np.ndarray) and others.ndim == 2:

pandas/core/window/common.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -296,7 +296,7 @@ def zsqrt(x):
296296
mask = x < 0
297297

298298
if isinstance(x, ABCDataFrame):
299-
if mask.values.any():
299+
if mask._values.any():
300300
result[mask] = 0
301301
else:
302302
if mask.any():

0 commit comments

Comments
 (0)