|
| 1 | +from collections import OrderedDict |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytest |
| 5 | + |
| 6 | +import pandas as pd |
| 7 | +from pandas import DataFrame, Timestamp |
| 8 | +import pandas._testing as tm |
| 9 | + |
| 10 | + |
| 11 | +class TestSelectDtypes: |
| 12 | + def test_select_dtypes_include_using_list_like(self): |
| 13 | + df = DataFrame( |
| 14 | + { |
| 15 | + "a": list("abc"), |
| 16 | + "b": list(range(1, 4)), |
| 17 | + "c": np.arange(3, 6).astype("u1"), |
| 18 | + "d": np.arange(4.0, 7.0, dtype="float64"), |
| 19 | + "e": [True, False, True], |
| 20 | + "f": pd.Categorical(list("abc")), |
| 21 | + "g": pd.date_range("20130101", periods=3), |
| 22 | + "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), |
| 23 | + "i": pd.date_range("20130101", periods=3, tz="CET"), |
| 24 | + "j": pd.period_range("2013-01", periods=3, freq="M"), |
| 25 | + "k": pd.timedelta_range("1 day", periods=3), |
| 26 | + } |
| 27 | + ) |
| 28 | + |
| 29 | + ri = df.select_dtypes(include=[np.number]) |
| 30 | + ei = df[["b", "c", "d", "k"]] |
| 31 | + tm.assert_frame_equal(ri, ei) |
| 32 | + |
| 33 | + ri = df.select_dtypes(include=[np.number], exclude=["timedelta"]) |
| 34 | + ei = df[["b", "c", "d"]] |
| 35 | + tm.assert_frame_equal(ri, ei) |
| 36 | + |
| 37 | + ri = df.select_dtypes(include=[np.number, "category"], exclude=["timedelta"]) |
| 38 | + ei = df[["b", "c", "d", "f"]] |
| 39 | + tm.assert_frame_equal(ri, ei) |
| 40 | + |
| 41 | + ri = df.select_dtypes(include=["datetime"]) |
| 42 | + ei = df[["g"]] |
| 43 | + tm.assert_frame_equal(ri, ei) |
| 44 | + |
| 45 | + ri = df.select_dtypes(include=["datetime64"]) |
| 46 | + ei = df[["g"]] |
| 47 | + tm.assert_frame_equal(ri, ei) |
| 48 | + |
| 49 | + ri = df.select_dtypes(include=["datetimetz"]) |
| 50 | + ei = df[["h", "i"]] |
| 51 | + tm.assert_frame_equal(ri, ei) |
| 52 | + |
| 53 | + with pytest.raises(NotImplementedError, match=r"^$"): |
| 54 | + df.select_dtypes(include=["period"]) |
| 55 | + |
| 56 | + def test_select_dtypes_exclude_using_list_like(self): |
| 57 | + df = DataFrame( |
| 58 | + { |
| 59 | + "a": list("abc"), |
| 60 | + "b": list(range(1, 4)), |
| 61 | + "c": np.arange(3, 6).astype("u1"), |
| 62 | + "d": np.arange(4.0, 7.0, dtype="float64"), |
| 63 | + "e": [True, False, True], |
| 64 | + } |
| 65 | + ) |
| 66 | + re = df.select_dtypes(exclude=[np.number]) |
| 67 | + ee = df[["a", "e"]] |
| 68 | + tm.assert_frame_equal(re, ee) |
| 69 | + |
| 70 | + def test_select_dtypes_exclude_include_using_list_like(self): |
| 71 | + df = DataFrame( |
| 72 | + { |
| 73 | + "a": list("abc"), |
| 74 | + "b": list(range(1, 4)), |
| 75 | + "c": np.arange(3, 6).astype("u1"), |
| 76 | + "d": np.arange(4.0, 7.0, dtype="float64"), |
| 77 | + "e": [True, False, True], |
| 78 | + "f": pd.date_range("now", periods=3).values, |
| 79 | + } |
| 80 | + ) |
| 81 | + exclude = (np.datetime64,) |
| 82 | + include = np.bool_, "integer" |
| 83 | + r = df.select_dtypes(include=include, exclude=exclude) |
| 84 | + e = df[["b", "c", "e"]] |
| 85 | + tm.assert_frame_equal(r, e) |
| 86 | + |
| 87 | + exclude = ("datetime",) |
| 88 | + include = "bool", "int64", "int32" |
| 89 | + r = df.select_dtypes(include=include, exclude=exclude) |
| 90 | + e = df[["b", "e"]] |
| 91 | + tm.assert_frame_equal(r, e) |
| 92 | + |
| 93 | + def test_select_dtypes_include_using_scalars(self): |
| 94 | + df = DataFrame( |
| 95 | + { |
| 96 | + "a": list("abc"), |
| 97 | + "b": list(range(1, 4)), |
| 98 | + "c": np.arange(3, 6).astype("u1"), |
| 99 | + "d": np.arange(4.0, 7.0, dtype="float64"), |
| 100 | + "e": [True, False, True], |
| 101 | + "f": pd.Categorical(list("abc")), |
| 102 | + "g": pd.date_range("20130101", periods=3), |
| 103 | + "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), |
| 104 | + "i": pd.date_range("20130101", periods=3, tz="CET"), |
| 105 | + "j": pd.period_range("2013-01", periods=3, freq="M"), |
| 106 | + "k": pd.timedelta_range("1 day", periods=3), |
| 107 | + } |
| 108 | + ) |
| 109 | + |
| 110 | + ri = df.select_dtypes(include=np.number) |
| 111 | + ei = df[["b", "c", "d", "k"]] |
| 112 | + tm.assert_frame_equal(ri, ei) |
| 113 | + |
| 114 | + ri = df.select_dtypes(include="datetime") |
| 115 | + ei = df[["g"]] |
| 116 | + tm.assert_frame_equal(ri, ei) |
| 117 | + |
| 118 | + ri = df.select_dtypes(include="datetime64") |
| 119 | + ei = df[["g"]] |
| 120 | + tm.assert_frame_equal(ri, ei) |
| 121 | + |
| 122 | + ri = df.select_dtypes(include="category") |
| 123 | + ei = df[["f"]] |
| 124 | + tm.assert_frame_equal(ri, ei) |
| 125 | + |
| 126 | + with pytest.raises(NotImplementedError, match=r"^$"): |
| 127 | + df.select_dtypes(include="period") |
| 128 | + |
| 129 | + def test_select_dtypes_exclude_using_scalars(self): |
| 130 | + df = DataFrame( |
| 131 | + { |
| 132 | + "a": list("abc"), |
| 133 | + "b": list(range(1, 4)), |
| 134 | + "c": np.arange(3, 6).astype("u1"), |
| 135 | + "d": np.arange(4.0, 7.0, dtype="float64"), |
| 136 | + "e": [True, False, True], |
| 137 | + "f": pd.Categorical(list("abc")), |
| 138 | + "g": pd.date_range("20130101", periods=3), |
| 139 | + "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), |
| 140 | + "i": pd.date_range("20130101", periods=3, tz="CET"), |
| 141 | + "j": pd.period_range("2013-01", periods=3, freq="M"), |
| 142 | + "k": pd.timedelta_range("1 day", periods=3), |
| 143 | + } |
| 144 | + ) |
| 145 | + |
| 146 | + ri = df.select_dtypes(exclude=np.number) |
| 147 | + ei = df[["a", "e", "f", "g", "h", "i", "j"]] |
| 148 | + tm.assert_frame_equal(ri, ei) |
| 149 | + |
| 150 | + ri = df.select_dtypes(exclude="category") |
| 151 | + ei = df[["a", "b", "c", "d", "e", "g", "h", "i", "j", "k"]] |
| 152 | + tm.assert_frame_equal(ri, ei) |
| 153 | + |
| 154 | + with pytest.raises(NotImplementedError, match=r"^$"): |
| 155 | + df.select_dtypes(exclude="period") |
| 156 | + |
| 157 | + def test_select_dtypes_include_exclude_using_scalars(self): |
| 158 | + df = DataFrame( |
| 159 | + { |
| 160 | + "a": list("abc"), |
| 161 | + "b": list(range(1, 4)), |
| 162 | + "c": np.arange(3, 6).astype("u1"), |
| 163 | + "d": np.arange(4.0, 7.0, dtype="float64"), |
| 164 | + "e": [True, False, True], |
| 165 | + "f": pd.Categorical(list("abc")), |
| 166 | + "g": pd.date_range("20130101", periods=3), |
| 167 | + "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), |
| 168 | + "i": pd.date_range("20130101", periods=3, tz="CET"), |
| 169 | + "j": pd.period_range("2013-01", periods=3, freq="M"), |
| 170 | + "k": pd.timedelta_range("1 day", periods=3), |
| 171 | + } |
| 172 | + ) |
| 173 | + |
| 174 | + ri = df.select_dtypes(include=np.number, exclude="floating") |
| 175 | + ei = df[["b", "c", "k"]] |
| 176 | + tm.assert_frame_equal(ri, ei) |
| 177 | + |
| 178 | + def test_select_dtypes_include_exclude_mixed_scalars_lists(self): |
| 179 | + df = DataFrame( |
| 180 | + { |
| 181 | + "a": list("abc"), |
| 182 | + "b": list(range(1, 4)), |
| 183 | + "c": np.arange(3, 6).astype("u1"), |
| 184 | + "d": np.arange(4.0, 7.0, dtype="float64"), |
| 185 | + "e": [True, False, True], |
| 186 | + "f": pd.Categorical(list("abc")), |
| 187 | + "g": pd.date_range("20130101", periods=3), |
| 188 | + "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), |
| 189 | + "i": pd.date_range("20130101", periods=3, tz="CET"), |
| 190 | + "j": pd.period_range("2013-01", periods=3, freq="M"), |
| 191 | + "k": pd.timedelta_range("1 day", periods=3), |
| 192 | + } |
| 193 | + ) |
| 194 | + |
| 195 | + ri = df.select_dtypes(include=np.number, exclude=["floating", "timedelta"]) |
| 196 | + ei = df[["b", "c"]] |
| 197 | + tm.assert_frame_equal(ri, ei) |
| 198 | + |
| 199 | + ri = df.select_dtypes(include=[np.number, "category"], exclude="floating") |
| 200 | + ei = df[["b", "c", "f", "k"]] |
| 201 | + tm.assert_frame_equal(ri, ei) |
| 202 | + |
| 203 | + def test_select_dtypes_duplicate_columns(self): |
| 204 | + # GH20839 |
| 205 | + odict = OrderedDict |
| 206 | + df = DataFrame( |
| 207 | + odict( |
| 208 | + [ |
| 209 | + ("a", list("abc")), |
| 210 | + ("b", list(range(1, 4))), |
| 211 | + ("c", np.arange(3, 6).astype("u1")), |
| 212 | + ("d", np.arange(4.0, 7.0, dtype="float64")), |
| 213 | + ("e", [True, False, True]), |
| 214 | + ("f", pd.date_range("now", periods=3).values), |
| 215 | + ] |
| 216 | + ) |
| 217 | + ) |
| 218 | + df.columns = ["a", "a", "b", "b", "b", "c"] |
| 219 | + |
| 220 | + expected = DataFrame( |
| 221 | + {"a": list(range(1, 4)), "b": np.arange(3, 6).astype("u1")} |
| 222 | + ) |
| 223 | + |
| 224 | + result = df.select_dtypes(include=[np.number], exclude=["floating"]) |
| 225 | + tm.assert_frame_equal(result, expected) |
| 226 | + |
| 227 | + def test_select_dtypes_not_an_attr_but_still_valid_dtype(self): |
| 228 | + df = DataFrame( |
| 229 | + { |
| 230 | + "a": list("abc"), |
| 231 | + "b": list(range(1, 4)), |
| 232 | + "c": np.arange(3, 6).astype("u1"), |
| 233 | + "d": np.arange(4.0, 7.0, dtype="float64"), |
| 234 | + "e": [True, False, True], |
| 235 | + "f": pd.date_range("now", periods=3).values, |
| 236 | + } |
| 237 | + ) |
| 238 | + df["g"] = df.f.diff() |
| 239 | + assert not hasattr(np, "u8") |
| 240 | + r = df.select_dtypes(include=["i8", "O"], exclude=["timedelta"]) |
| 241 | + e = df[["a", "b"]] |
| 242 | + tm.assert_frame_equal(r, e) |
| 243 | + |
| 244 | + r = df.select_dtypes(include=["i8", "O", "timedelta64[ns]"]) |
| 245 | + e = df[["a", "b", "g"]] |
| 246 | + tm.assert_frame_equal(r, e) |
| 247 | + |
| 248 | + def test_select_dtypes_empty(self): |
| 249 | + df = DataFrame({"a": list("abc"), "b": list(range(1, 4))}) |
| 250 | + msg = "at least one of include or exclude must be nonempty" |
| 251 | + with pytest.raises(ValueError, match=msg): |
| 252 | + df.select_dtypes() |
| 253 | + |
| 254 | + def test_select_dtypes_bad_datetime64(self): |
| 255 | + df = DataFrame( |
| 256 | + { |
| 257 | + "a": list("abc"), |
| 258 | + "b": list(range(1, 4)), |
| 259 | + "c": np.arange(3, 6).astype("u1"), |
| 260 | + "d": np.arange(4.0, 7.0, dtype="float64"), |
| 261 | + "e": [True, False, True], |
| 262 | + "f": pd.date_range("now", periods=3).values, |
| 263 | + } |
| 264 | + ) |
| 265 | + with pytest.raises(ValueError, match=".+ is too specific"): |
| 266 | + df.select_dtypes(include=["datetime64[D]"]) |
| 267 | + |
| 268 | + with pytest.raises(ValueError, match=".+ is too specific"): |
| 269 | + df.select_dtypes(exclude=["datetime64[as]"]) |
| 270 | + |
| 271 | + def test_select_dtypes_datetime_with_tz(self): |
| 272 | + |
| 273 | + df2 = DataFrame( |
| 274 | + dict( |
| 275 | + A=Timestamp("20130102", tz="US/Eastern"), |
| 276 | + B=Timestamp("20130603", tz="CET"), |
| 277 | + ), |
| 278 | + index=range(5), |
| 279 | + ) |
| 280 | + df3 = pd.concat([df2.A.to_frame(), df2.B.to_frame()], axis=1) |
| 281 | + result = df3.select_dtypes(include=["datetime64[ns]"]) |
| 282 | + expected = df3.reindex(columns=[]) |
| 283 | + tm.assert_frame_equal(result, expected) |
| 284 | + |
| 285 | + @pytest.mark.parametrize( |
| 286 | + "dtype", [str, "str", np.string_, "S1", "unicode", np.unicode_, "U1"] |
| 287 | + ) |
| 288 | + @pytest.mark.parametrize("arg", ["include", "exclude"]) |
| 289 | + def test_select_dtypes_str_raises(self, dtype, arg): |
| 290 | + df = DataFrame( |
| 291 | + { |
| 292 | + "a": list("abc"), |
| 293 | + "g": list("abc"), |
| 294 | + "b": list(range(1, 4)), |
| 295 | + "c": np.arange(3, 6).astype("u1"), |
| 296 | + "d": np.arange(4.0, 7.0, dtype="float64"), |
| 297 | + "e": [True, False, True], |
| 298 | + "f": pd.date_range("now", periods=3).values, |
| 299 | + } |
| 300 | + ) |
| 301 | + msg = "string dtypes are not allowed" |
| 302 | + kwargs = {arg: [dtype]} |
| 303 | + |
| 304 | + with pytest.raises(TypeError, match=msg): |
| 305 | + df.select_dtypes(**kwargs) |
| 306 | + |
| 307 | + def test_select_dtypes_bad_arg_raises(self): |
| 308 | + df = DataFrame( |
| 309 | + { |
| 310 | + "a": list("abc"), |
| 311 | + "g": list("abc"), |
| 312 | + "b": list(range(1, 4)), |
| 313 | + "c": np.arange(3, 6).astype("u1"), |
| 314 | + "d": np.arange(4.0, 7.0, dtype="float64"), |
| 315 | + "e": [True, False, True], |
| 316 | + "f": pd.date_range("now", periods=3).values, |
| 317 | + } |
| 318 | + ) |
| 319 | + |
| 320 | + msg = "data type.*not understood" |
| 321 | + with pytest.raises(TypeError, match=msg): |
| 322 | + df.select_dtypes(["blargy, blarg, blarg"]) |
| 323 | + |
| 324 | + def test_select_dtypes_typecodes(self): |
| 325 | + # GH 11990 |
| 326 | + df = tm.makeCustomDataframe(30, 3, data_gen_f=lambda x, y: np.random.random()) |
| 327 | + expected = df |
| 328 | + FLOAT_TYPES = list(np.typecodes["AllFloat"]) |
| 329 | + tm.assert_frame_equal(df.select_dtypes(FLOAT_TYPES), expected) |
0 commit comments