|
206 | 206 | format as fmt,
|
207 | 207 | )
|
208 | 208 | from pandas.io.formats.info import (
|
209 |
| - BaseInfo, |
210 | 209 | DataFrameInfo,
|
| 210 | + frame_sub_kwargs, |
211 | 211 | )
|
212 | 212 | import pandas.plotting
|
213 | 213 |
|
@@ -3138,122 +3138,7 @@ def to_xml(
|
3138 | 3138 | return xml_formatter.write_output()
|
3139 | 3139 |
|
3140 | 3140 | # ----------------------------------------------------------------------
|
3141 |
| - @Substitution( |
3142 |
| - klass="DataFrame", |
3143 |
| - type_sub=" and columns", |
3144 |
| - max_cols_sub=dedent( |
3145 |
| - """\ |
3146 |
| - max_cols : int, optional |
3147 |
| - When to switch from the verbose to the truncated output. If the |
3148 |
| - DataFrame has more than `max_cols` columns, the truncated output |
3149 |
| - is used. By default, the setting in |
3150 |
| - ``pandas.options.display.max_info_columns`` is used.""" |
3151 |
| - ), |
3152 |
| - show_counts_sub=dedent( |
3153 |
| - """\ |
3154 |
| - show_counts : bool, optional |
3155 |
| - Whether to show the non-null counts. By default, this is shown |
3156 |
| - only if the DataFrame is smaller than |
3157 |
| - ``pandas.options.display.max_info_rows`` and |
3158 |
| - ``pandas.options.display.max_info_columns``. A value of True always |
3159 |
| - shows the counts, and False never shows the counts. |
3160 |
| - null_counts : bool, optional |
3161 |
| - .. deprecated:: 1.2.0 |
3162 |
| - Use show_counts instead.""" |
3163 |
| - ), |
3164 |
| - examples_sub=dedent( |
3165 |
| - """\ |
3166 |
| - >>> int_values = [1, 2, 3, 4, 5] |
3167 |
| - >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] |
3168 |
| - >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] |
3169 |
| - >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, |
3170 |
| - ... "float_col": float_values}) |
3171 |
| - >>> df |
3172 |
| - int_col text_col float_col |
3173 |
| - 0 1 alpha 0.00 |
3174 |
| - 1 2 beta 0.25 |
3175 |
| - 2 3 gamma 0.50 |
3176 |
| - 3 4 delta 0.75 |
3177 |
| - 4 5 epsilon 1.00 |
3178 |
| -
|
3179 |
| - Prints information of all columns: |
3180 |
| -
|
3181 |
| - >>> df.info(verbose=True) |
3182 |
| - <class 'pandas.core.frame.DataFrame'> |
3183 |
| - RangeIndex: 5 entries, 0 to 4 |
3184 |
| - Data columns (total 3 columns): |
3185 |
| - # Column Non-Null Count Dtype |
3186 |
| - --- ------ -------------- ----- |
3187 |
| - 0 int_col 5 non-null int64 |
3188 |
| - 1 text_col 5 non-null object |
3189 |
| - 2 float_col 5 non-null float64 |
3190 |
| - dtypes: float64(1), int64(1), object(1) |
3191 |
| - memory usage: 248.0+ bytes |
3192 |
| -
|
3193 |
| - Prints a summary of columns count and its dtypes but not per column |
3194 |
| - information: |
3195 |
| -
|
3196 |
| - >>> df.info(verbose=False) |
3197 |
| - <class 'pandas.core.frame.DataFrame'> |
3198 |
| - RangeIndex: 5 entries, 0 to 4 |
3199 |
| - Columns: 3 entries, int_col to float_col |
3200 |
| - dtypes: float64(1), int64(1), object(1) |
3201 |
| - memory usage: 248.0+ bytes |
3202 |
| -
|
3203 |
| - Pipe output of DataFrame.info to buffer instead of sys.stdout, get |
3204 |
| - buffer content and writes to a text file: |
3205 |
| -
|
3206 |
| - >>> import io |
3207 |
| - >>> buffer = io.StringIO() |
3208 |
| - >>> df.info(buf=buffer) |
3209 |
| - >>> s = buffer.getvalue() |
3210 |
| - >>> with open("df_info.txt", "w", |
3211 |
| - ... encoding="utf-8") as f: # doctest: +SKIP |
3212 |
| - ... f.write(s) |
3213 |
| - 260 |
3214 |
| -
|
3215 |
| - The `memory_usage` parameter allows deep introspection mode, specially |
3216 |
| - useful for big DataFrames and fine-tune memory optimization: |
3217 |
| -
|
3218 |
| - >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) |
3219 |
| - >>> df = pd.DataFrame({ |
3220 |
| - ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), |
3221 |
| - ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), |
3222 |
| - ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) |
3223 |
| - ... }) |
3224 |
| - >>> df.info() |
3225 |
| - <class 'pandas.core.frame.DataFrame'> |
3226 |
| - RangeIndex: 1000000 entries, 0 to 999999 |
3227 |
| - Data columns (total 3 columns): |
3228 |
| - # Column Non-Null Count Dtype |
3229 |
| - --- ------ -------------- ----- |
3230 |
| - 0 column_1 1000000 non-null object |
3231 |
| - 1 column_2 1000000 non-null object |
3232 |
| - 2 column_3 1000000 non-null object |
3233 |
| - dtypes: object(3) |
3234 |
| - memory usage: 22.9+ MB |
3235 |
| -
|
3236 |
| - >>> df.info(memory_usage='deep') |
3237 |
| - <class 'pandas.core.frame.DataFrame'> |
3238 |
| - RangeIndex: 1000000 entries, 0 to 999999 |
3239 |
| - Data columns (total 3 columns): |
3240 |
| - # Column Non-Null Count Dtype |
3241 |
| - --- ------ -------------- ----- |
3242 |
| - 0 column_1 1000000 non-null object |
3243 |
| - 1 column_2 1000000 non-null object |
3244 |
| - 2 column_3 1000000 non-null object |
3245 |
| - dtypes: object(3) |
3246 |
| - memory usage: 165.9 MB""" |
3247 |
| - ), |
3248 |
| - see_also_sub=dedent( |
3249 |
| - """\ |
3250 |
| - DataFrame.describe: Generate descriptive statistics of DataFrame |
3251 |
| - columns. |
3252 |
| - DataFrame.memory_usage: Memory usage of DataFrame columns.""" |
3253 |
| - ), |
3254 |
| - version_added_sub="", |
3255 |
| - ) |
3256 |
| - @doc(BaseInfo.render) |
| 3141 | + @doc(DataFrameInfo.render, **frame_sub_kwargs) |
3257 | 3142 | def info(
|
3258 | 3143 | self,
|
3259 | 3144 | verbose: bool | None = None,
|
|
0 commit comments