@@ -10485,7 +10485,7 @@ def _doc_parms(cls):
10485
10485
True
10486
10486
>>> pd.Series([True, False]).all()
10487
10487
False
10488
- >>> pd.Series([]).all()
10488
+ >>> pd.Series([], dtype=object ).all()
10489
10489
True
10490
10490
>>> pd.Series([np.nan]).all()
10491
10491
True
@@ -10853,7 +10853,7 @@ def _doc_parms(cls):
10853
10853
False
10854
10854
>>> pd.Series([True, False]).any()
10855
10855
True
10856
- >>> pd.Series([]).any()
10856
+ >>> pd.Series([], dtype=object ).any()
10857
10857
False
10858
10858
>>> pd.Series([np.nan]).any()
10859
10859
False
@@ -10955,13 +10955,13 @@ def _doc_parms(cls):
10955
10955
10956
10956
By default, the sum of an empty or all-NA Series is ``0``.
10957
10957
10958
- >>> pd.Series([]).sum() # min_count=0 is the default
10958
+ >>> pd.Series([], dtype=float ).sum() # min_count=0 is the default
10959
10959
0.0
10960
10960
10961
10961
This can be controlled with the ``min_count`` parameter. For example, if
10962
10962
you'd like the sum of an empty series to be NaN, pass ``min_count=1``.
10963
10963
10964
- >>> pd.Series([]).sum(min_count=1)
10964
+ >>> pd.Series([], dtype=float ).sum(min_count=1)
10965
10965
nan
10966
10966
10967
10967
Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
@@ -11002,12 +11002,12 @@ def _doc_parms(cls):
11002
11002
--------
11003
11003
By default, the product of an empty or all-NA Series is ``1``
11004
11004
11005
- >>> pd.Series([]).prod()
11005
+ >>> pd.Series([], dtype=float ).prod()
11006
11006
1.0
11007
11007
11008
11008
This can be controlled with the ``min_count`` parameter
11009
11009
11010
- >>> pd.Series([]).prod(min_count=1)
11010
+ >>> pd.Series([], dtype=float ).prod(min_count=1)
11011
11011
nan
11012
11012
11013
11013
Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
0 commit comments