@@ -5081,8 +5081,7 @@ def pipe(self, func, *args, **kwargs):
5081
5081
`agg` is an alias for `aggregate`. Use the alias.
5082
5082
5083
5083
A passed user-defined-function will be passed a Series for evaluation.
5084
- {examples}
5085
- """
5084
+ {examples}"""
5086
5085
)
5087
5086
5088
5087
# ----------------------------------------------------------------------
@@ -11054,8 +11053,7 @@ def stat_func(
11054
11053
11055
11054
Returns
11056
11055
-------
11057
- {name1} or {name2} (if level specified)\n
11058
- """
11056
+ {name1} or {name2} (if level specified)\n """
11059
11057
nv .validate_stat_ddof_func (tuple (), kwargs , fname = name )
11060
11058
if skipna is None :
11061
11059
skipna = True
@@ -11124,8 +11122,7 @@ def cum_func(self, axis=None, skipna=True, *args, **kwargs):
11124
11122
{name2}.cumsum : Return cumulative sum over {name2} axis.
11125
11123
{name2}.cumprod : Return cumulative product over {name2} axis.
11126
11124
11127
- {examples}
11128
- """
11125
+ {examples}"""
11129
11126
skipna = nv .validate_cum_func_with_skipna (skipna , args , kwargs , name )
11130
11127
if axis is None :
11131
11128
axis = self ._stat_axis_number
@@ -11172,11 +11169,11 @@ def _make_logical_function(
11172
11169
)
11173
11170
def logical_func (self , axis = 0 , bool_only = None , skipna = True , level = None , ** kwargs ):
11174
11171
"""
11175
- {desc}
11172
+ {desc}
11176
11173
11177
- Parameters
11178
- ----------
11179
- axis : {{0 or 'index', 1 or 'columns', None}}, default 0
11174
+ Parameters
11175
+ ----------
11176
+ axis : {{0 or 'index', 1 or 'columns', None}}, default 0
11180
11177
Indicate which axis or axes should be reduced.
11181
11178
11182
11179
* 0 / 'index' : reduce the index, return a Series whose index is the
@@ -11185,30 +11182,29 @@ def logical_func(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs
11185
11182
original index.
11186
11183
* None : reduce all axes, return a scalar.
11187
11184
11188
- bool_only : bool, default None
11185
+ bool_only : bool, default None
11189
11186
Include only boolean columns. If None, will attempt to use everything,
11190
11187
then use only boolean data. Not implemented for Series.
11191
- skipna : bool, default True
11188
+ skipna : bool, default True
11192
11189
Exclude NA/null values. If the entire row/column is NA and skipna is
11193
11190
True, then the result will be {empty_value}, as for an empty row/column.
11194
11191
If skipna is False, then NA are treated as True, because these are not
11195
11192
equal to zero.
11196
- level : int or level name, default None
11193
+ level : int or level name, default None
11197
11194
If the axis is a MultiIndex (hierarchical), count along a
11198
11195
particular level, collapsing into a {name1}.
11199
- **kwargs : any, default None
11196
+ **kwargs : any, default None
11200
11197
Additional keywords have no effect but might be accepted for
11201
11198
compatibility with NumPy.
11202
11199
11203
- Returns
11204
- -------
11205
- {name1} or {name2}
11200
+ Returns
11201
+ -------
11202
+ {name1} or {name2}
11206
11203
If level is specified, then, {name2} is returned; otherwise, {name1}
11207
11204
is returned.
11208
11205
11209
- {see_also}
11210
- {examples}
11211
- """
11206
+ {see_also}
11207
+ {examples}"""
11212
11208
nv .validate_logical_func (tuple (), kwargs , fname = name )
11213
11209
if level is not None :
11214
11210
if bool_only is not None :
0 commit comments