@@ -729,20 +729,22 @@ def interweave(list_obj):
729
729
(- 1 , 'ffill' , None ), (- 1 , 'ffill' , 1 ),
730
730
(- 1 , 'bfill' , None ), (- 1 , 'bfill' , 1 )])
731
731
def test_pct_change (test_series , shuffle , periods , fill_method , limit ):
732
- # Groupby pct change uses an apply if monotonic and a vectorized operation if non-monotonic
732
+ # Groupby pct change uses an apply if monotonic
733
+ # and a vectorized operation if non-monotonic
733
734
# Shuffle parameter tests each
734
735
vals = [np .nan , np .nan , 1 , 2 , 4 , 10 , np .nan , np .nan ]
735
736
keys = ['a' , 'b' ]
736
- df = DataFrame ({ 'key' : [k for j in list (map (lambda x : [x ] * len (vals ), keys )) for k in j ],
737
- 'vals' : vals * 2 })
737
+ key_v = [k for j in list (map (lambda x : [x ] * len (vals ), keys )) for k in j ]
738
+ df = DataFrame ({ 'key' : key_v , 'vals' : vals * 2 })
738
739
if shuffle :
739
740
df = df .reindex (np .random .permutation (len (df ))).reset_index (drop = True )
740
741
741
742
manual_apply = []
742
743
for k in keys :
743
- manual_apply .append (Series (df .loc [df .key == k , 'vals' ].values ).pct_change (periods = periods ,
744
- fill_method = fill_method ,
745
- limit = limit ))
744
+ subgroup = Series (df .loc [df .key == k , 'vals' ].values )
745
+ manual_apply .append (subgroup .pct_change (periods = periods ,
746
+ fill_method = fill_method ,
747
+ limit = limit ))
746
748
exp_vals = pd .concat (manual_apply ).reset_index (drop = True )
747
749
exp = pd .DataFrame (exp_vals , columns = ['_pct_change' ])
748
750
grp = df .groupby ('key' )
0 commit comments