@@ -276,77 +276,70 @@ def test_resample_quantile(series):
276
276
tm .assert_series_equal (result , expected )
277
277
278
278
279
- @all_ts
280
279
@pytest .mark .parametrize (
281
- "freq, result_name, result_data, result_index, result_freq" ,
280
+ "_index_factory,_series_name,_index_start,_index_end" , [DATE_RANGE , PERIOD_RANGE ]
281
+ )
282
+ @pytest .mark .parametrize (
283
+ "freq, result_dict" ,
282
284
[
283
285
(
284
286
"D" ,
285
- "dti" ,
286
- [1.0 ] * 5 + [np .nan ] * 5 ,
287
- ["2005-01-{}" .format (i ) for i in range (1 , 11 )],
288
- "D" ,
289
- ),
290
- (
291
- "D" ,
292
- "pi" ,
293
- [1.0 ] * 5 + [np .nan ] * 5 ,
294
- ["2005-01-{}" .format (i ) for i in range (1 , 11 )],
295
- "D" ,
296
- ),
297
- (
298
- "D" ,
299
- "tdi" ,
300
- [1.0 ] * 5 + [np .nan ] * 5 ,
301
- ["{} days" .format (i ) for i in range (1 , 11 )],
302
- "D" ,
287
+ {
288
+ "dti" : {
289
+ "data" : [1.0 ] * 5 + [np .nan ] * 5 ,
290
+ "index" : DatetimeIndex (
291
+ ["2005-01-{}" .format (i ) for i in range (1 , 11 )], freq = "D"
292
+ ),
293
+ },
294
+ "pi" : {
295
+ "data" : [1.0 ] * 5 + [np .nan ] * 5 ,
296
+ "index" : PeriodIndex (
297
+ ["2005-01-{}" .format (i ) for i in range (1 , 11 )], freq = "D"
298
+ ),
299
+ },
300
+ },
303
301
),
304
302
(
305
303
"W" ,
306
- "dti" ,
307
- [2.0 , 3.0 , np .nan ],
308
- ["2005-01-02" , "2005-01-09" , "2005-01-16" ],
309
- "W-SUN" ,
304
+ {
305
+ "dti" : {
306
+ "data" : [2.0 , 3.0 , np .nan ],
307
+ "index" : DatetimeIndex (
308
+ ["2005-01-02" , "2005-01-09" , "2005-01-16" ], freq = "W-SUN"
309
+ ),
310
+ },
311
+ "pi" : {
312
+ "data" : [2.0 , 3.0 , np .nan ],
313
+ "index" : PeriodIndex (
314
+ [
315
+ "2004-12-27/2005-01-02" ,
316
+ "2005-01-03/2005-01-09" ,
317
+ "2005-01-10/2005-01-16" ,
318
+ ],
319
+ freq = "W-SUN" ,
320
+ ),
321
+ },
322
+ },
310
323
),
311
324
(
312
- "W" ,
313
- "pi" ,
314
- [2.0 , 3.0 , np .nan ],
315
- ["2004-12-27/2005-01-02" , "2005-01-03/2005-01-09" , "2005-01-10/2005-01-16" ],
316
- "W-SUN" ,
325
+ "M" ,
326
+ {
327
+ "dti" : {
328
+ "data" : [5.0 ],
329
+ "index" : DatetimeIndex (["2005-01-31" ], freq = "M" ),
330
+ },
331
+ "pi" : {"data" : [5.0 ], "index" : PeriodIndex (["2005-01" ], freq = "M" )},
332
+ },
317
333
),
318
- ("W" , "" , "" , "" , "" ),
319
- ("M" , "dti" , [5.0 ], ["2005-01-31" ], "M" ),
320
- ("M" , "pi" , [5.0 ], ["2005-01" ], "M" ),
321
- ("M" , "" , "" , "" , "" ),
322
334
],
323
335
)
324
- def test_resample_sum (
325
- series , freq , result_name , result_data , result_index , result_freq
326
- ):
336
+ def test_resample_sum (series , freq , result_dict ):
327
337
# GH 19974
328
338
series [:5 ] = 1
329
339
series [5 :] = np .nan
340
+ result = series .resample (freq ).sum (min_count = 1 )
330
341
331
- if isinstance (series .index , TimedeltaIndex ) and freq != "D" :
332
- msg = ".* is a non-fixed frequency"
333
- with pytest .raises (ValueError , match = msg ):
334
- result = series .resample (freq ).sum (min_count = 1 )
335
-
336
- else :
337
- result = series .resample (freq ).sum (min_count = 1 )
338
-
339
- if isinstance (series .index , DatetimeIndex ) and result_name == "dti" :
340
- index = DatetimeIndex (result_index , freq = result_freq )
341
- expected = Series (result_data , index , name = result_name )
342
- tm .assert_series_equal (result , expected )
343
-
344
- if isinstance (series .index , PeriodIndex ) and result_name == "pi" :
345
- index = PeriodIndex (result_index , freq = result_freq )
346
- expected = Series (result_data , index , name = result_name )
347
- tm .assert_series_equal (result , expected )
348
-
349
- if isinstance (series .index , TimedeltaIndex ) and result_name == "tdi" :
350
- index = TimedeltaIndex (result_index , freq = result_freq )
351
- expected = Series (result_data , index , name = result_name )
352
- tm .assert_series_equal (result , expected )
342
+ key = result .name
343
+ index = result_dict [key ]["index" ]
344
+ expected = Series (result_dict [key ]["data" ], index , name = key )
345
+ tm .assert_series_equal (result , expected )
0 commit comments