@@ -1830,23 +1830,24 @@ def fillna(self, value=None, method=None, axis=0, inplace=False,
1830
1830
Method to use for filling holes in reindexed Series
1831
1831
pad / ffill: propagate last valid observation forward to next valid
1832
1832
backfill / bfill: use NEXT valid observation to fill gap
1833
- value : scalar or dict
1834
- Value to use to fill holes (e.g. 0), alternately a dict of values
1835
- specifying which value to use for each column (columns not in the
1836
- dict will not be filled). This value cannot be a list.
1833
+ value : scalar, dict, or Series
1834
+ Value to use to fill holes (e.g. 0), alternately a dict/Series of
1835
+ values specifying which value to use for each index (for a Series) or
1836
+ column (for a DataFrame). (values not in the dict/Series will not be
1837
+ filled). This value cannot be a list.
1837
1838
axis : {0, 1}, default 0
1838
1839
0: fill column-by-column
1839
1840
1: fill row-by-row
1840
1841
inplace : boolean, default False
1841
1842
If True, fill in place. Note: this will modify any
1842
1843
other views on this object, (e.g. a no-copy slice for a column in a
1843
- DataFrame). Still returns the object.
1844
+ DataFrame).
1844
1845
limit : int, default None
1845
1846
Maximum size gap to forward or backward fill
1846
- downcast : dict, default is None, a dict of item->dtype of what to
1847
- downcast if possible, or the string 'infer' which will try to
1848
- downcast to an appropriate equal type (e.g. float64 to int64 if
1849
- possible)
1847
+ downcast : dict, default is None
1848
+ a dict of item->dtype of what to downcast if possible,
1849
+ or the string 'infer' which will try to downcast to an appropriate
1850
+ equal type (e.g. float64 to int64 if possible)
1850
1851
1851
1852
See also
1852
1853
--------
0 commit comments