@@ -145,7 +145,7 @@ def group_median_float64(ndarray[float64_t, ndim=2] out,
145
145
@ cython.wraparound (False )
146
146
def group_cumprod_float64 (float64_t[:, ::1] out ,
147
147
const float64_t[:, :] values ,
148
- const intp_t[:] labels ,
148
+ const intp_t[::1 ] labels ,
149
149
int ngroups ,
150
150
bint is_datetimelike ,
151
151
bint skipna = True ) -> None:
@@ -202,7 +202,7 @@ def group_cumprod_float64(float64_t[:, ::1] out,
202
202
@ cython.wraparound (False )
203
203
def group_cumsum (numeric[:, ::1] out ,
204
204
ndarray[numeric , ndim = 2 ] values,
205
- const intp_t[:] labels ,
205
+ const intp_t[::1 ] labels ,
206
206
int ngroups ,
207
207
is_datetimelike ,
208
208
bint skipna = True ) -> None:
@@ -269,7 +269,7 @@ def group_cumsum(numeric[:, ::1] out,
269
269
270
270
@ cython.boundscheck (False )
271
271
@ cython.wraparound (False )
272
- def group_shift_indexer (int64_t[::1] out , const intp_t[:] labels ,
272
+ def group_shift_indexer (int64_t[::1] out , const intp_t[::1 ] labels ,
273
273
int ngroups , int periods ) -> None:
274
274
cdef:
275
275
Py_ssize_t N , i , j , ii , lab
@@ -390,7 +390,7 @@ def group_fillna_indexer(ndarray[int64_t] out, ndarray[intp_t] labels,
390
390
@ cython.wraparound (False )
391
391
def group_any_all (int8_t[::1] out ,
392
392
const int8_t[::1] values ,
393
- const intp_t[:] labels ,
393
+ const intp_t[::1 ] labels ,
394
394
const uint8_t[::1] mask ,
395
395
str val_test ,
396
396
bint skipna ,
@@ -482,7 +482,7 @@ ctypedef fused add_t:
482
482
def group_add (add_t[:, ::1] out ,
483
483
int64_t[::1] counts ,
484
484
ndarray[add_t , ndim = 2 ] values,
485
- const intp_t[:] labels ,
485
+ const intp_t[::1 ] labels ,
486
486
Py_ssize_t min_count = 0 ) -> None:
487
487
"""
488
488
Only aggregates on axis = 0 using Kahan summation
@@ -565,7 +565,7 @@ def group_add(add_t[:, ::1] out,
565
565
def group_prod (floating[:, ::1] out ,
566
566
int64_t[::1] counts ,
567
567
ndarray[floating , ndim = 2 ] values,
568
- const intp_t[:] labels ,
568
+ const intp_t[::1 ] labels ,
569
569
Py_ssize_t min_count = 0 ) -> None:
570
570
"""
571
571
Only aggregates on axis = 0
@@ -614,7 +614,7 @@ def group_prod(floating[:, ::1] out,
614
614
def group_var (floating[:, ::1] out ,
615
615
int64_t[::1] counts ,
616
616
ndarray[floating , ndim = 2 ] values,
617
- const intp_t[:] labels ,
617
+ const intp_t[::1 ] labels ,
618
618
Py_ssize_t min_count = - 1 ,
619
619
int64_t ddof = 1 ) -> None:
620
620
cdef:
@@ -720,7 +720,7 @@ def group_mean(floating[:, ::1] out,
720
720
def group_ohlc (floating[:, ::1] out ,
721
721
int64_t[::1] counts ,
722
722
ndarray[floating , ndim = 2 ] values,
723
- const intp_t[:] labels ,
723
+ const intp_t[::1 ] labels ,
724
724
Py_ssize_t min_count = - 1 ) -> None:
725
725
"""
726
726
Only aggregates on axis = 0
@@ -910,7 +910,7 @@ cdef inline bint _treat_as_na(rank_t val, bint is_datetimelike) nogil:
910
910
def group_last (rank_t[:, ::1] out ,
911
911
int64_t[::1] counts ,
912
912
ndarray[rank_t , ndim = 2 ] values,
913
- const intp_t[:] labels ,
913
+ const intp_t[::1 ] labels ,
914
914
Py_ssize_t min_count = - 1 ) -> None:
915
915
"""
916
916
Only aggregates on axis = 0
@@ -1002,7 +1002,7 @@ def group_last(rank_t[:, ::1] out,
1002
1002
def group_nth (rank_t[:, ::1] out ,
1003
1003
int64_t[::1] counts ,
1004
1004
ndarray[rank_t , ndim = 2 ] values,
1005
- const intp_t[:] labels ,
1005
+ const intp_t[::1 ] labels ,
1006
1006
int64_t min_count = - 1 ,
1007
1007
int64_t rank = 1 ,
1008
1008
) -> None:
@@ -1095,7 +1095,7 @@ def group_nth(rank_t[:, ::1] out,
1095
1095
@ cython.wraparound (False )
1096
1096
def group_rank (float64_t[:, ::1] out ,
1097
1097
ndarray[rank_t , ndim = 2 ] values,
1098
- const intp_t[:] labels ,
1098
+ const intp_t[::1 ] labels ,
1099
1099
int ngroups ,
1100
1100
bint is_datetimelike , str ties_method = " average" ,
1101
1101
bint ascending = True , bint pct = False , str na_option = " keep" ) -> None:
@@ -1173,7 +1173,7 @@ ctypedef fused groupby_t:
1173
1173
cdef group_min_max(groupby_t[:, ::1 ] out,
1174
1174
int64_t[::1 ] counts,
1175
1175
ndarray[groupby_t, ndim= 2 ] values,
1176
- const intp_t[:] labels,
1176
+ const intp_t[:: 1 ] labels,
1177
1177
Py_ssize_t min_count = - 1 ,
1178
1178
bint is_datetimelike = False ,
1179
1179
bint compute_max = True ):
@@ -1274,7 +1274,7 @@ cdef group_min_max(groupby_t[:, ::1] out,
1274
1274
def group_max (groupby_t[:, ::1] out ,
1275
1275
int64_t[::1] counts ,
1276
1276
ndarray[groupby_t , ndim = 2 ] values,
1277
- const intp_t[:] labels ,
1277
+ const intp_t[::1 ] labels ,
1278
1278
Py_ssize_t min_count = - 1 ,
1279
1279
bint is_datetimelike = False ) -> None:
1280
1280
"""See group_min_max.__doc__"""
@@ -1294,7 +1294,7 @@ def group_max(groupby_t[:, ::1] out,
1294
1294
def group_min(groupby_t[:, ::1] out ,
1295
1295
int64_t[::1] counts ,
1296
1296
ndarray[groupby_t , ndim = 2 ] values,
1297
- const intp_t[:] labels ,
1297
+ const intp_t[::1 ] labels ,
1298
1298
Py_ssize_t min_count = - 1 ,
1299
1299
bint is_datetimelike = False ) -> None:
1300
1300
"""See group_min_max.__doc__"""
@@ -1314,7 +1314,7 @@ def group_min(groupby_t[:, ::1] out,
1314
1314
cdef group_cummin_max(groupby_t[:, ::1] out ,
1315
1315
ndarray[groupby_t , ndim = 2 ] values,
1316
1316
uint8_t[:, ::1] mask ,
1317
- const intp_t[:] labels ,
1317
+ const intp_t[::1 ] labels ,
1318
1318
int ngroups ,
1319
1319
bint is_datetimelike ,
1320
1320
bint skipna ,
@@ -1368,7 +1368,7 @@ cdef group_cummin_max(groupby_t[:, ::1] out,
1368
1368
@ cython.wraparound (False )
1369
1369
cdef cummin_max(groupby_t[:, ::1 ] out,
1370
1370
ndarray[groupby_t, ndim= 2 ] values,
1371
- const intp_t[:] labels,
1371
+ const intp_t[:: 1 ] labels,
1372
1372
groupby_t[:, ::1 ] accum,
1373
1373
bint skipna,
1374
1374
bint is_datetimelike,
@@ -1428,7 +1428,7 @@ cdef cummin_max(groupby_t[:, ::1] out,
1428
1428
cdef masked_cummin_max(groupby_t[:, ::1 ] out,
1429
1429
ndarray[groupby_t, ndim= 2 ] values,
1430
1430
uint8_t[:, ::1 ] mask,
1431
- const intp_t[:] labels,
1431
+ const intp_t[:: 1 ] labels,
1432
1432
groupby_t[:, ::1 ] accum,
1433
1433
bint skipna,
1434
1434
bint compute_max):
@@ -1471,7 +1471,7 @@ cdef masked_cummin_max(groupby_t[:, ::1] out,
1471
1471
@ cython.wraparound (False )
1472
1472
def group_cummin (groupby_t[:, ::1] out ,
1473
1473
ndarray[groupby_t , ndim = 2 ] values,
1474
- const intp_t[:] labels ,
1474
+ const intp_t[::1 ] labels ,
1475
1475
int ngroups ,
1476
1476
bint is_datetimelike ,
1477
1477
uint8_t[:, ::1] mask = None ,
@@ -1493,7 +1493,7 @@ def group_cummin(groupby_t[:, ::1] out,
1493
1493
@cython.wraparound(False )
1494
1494
def group_cummax(groupby_t[:, ::1] out ,
1495
1495
ndarray[groupby_t , ndim = 2 ] values,
1496
- const intp_t[:] labels ,
1496
+ const intp_t[::1 ] labels ,
1497
1497
int ngroups ,
1498
1498
bint is_datetimelike ,
1499
1499
uint8_t[:, ::1] mask = None ,
0 commit comments