@@ -5050,8 +5050,7 @@ def pipe(self, func, *args, **kwargs):
5050
5050
`agg` is an alias for `aggregate`. Use the alias.
5051
5051
5052
5052
A passed user-defined-function will be passed a Series for evaluation.
5053
- {examples}
5054
- """
5053
+ {examples}"""
5055
5054
)
5056
5055
5057
5056
# ----------------------------------------------------------------------
@@ -11019,8 +11018,7 @@ def stat_func(
11019
11018
11020
11019
Returns
11021
11020
-------
11022
- {name1} or {name2} (if level specified)\n
11023
- """
11021
+ {name1} or {name2} (if level specified)\n """
11024
11022
nv .validate_stat_ddof_func (tuple (), kwargs , fname = name )
11025
11023
if skipna is None :
11026
11024
skipna = True
@@ -11089,8 +11087,7 @@ def cum_func(self, axis=None, skipna=True, *args, **kwargs):
11089
11087
{name2}.cumsum : Return cumulative sum over {name2} axis.
11090
11088
{name2}.cumprod : Return cumulative product over {name2} axis.
11091
11089
11092
- {examples}
11093
- """
11090
+ {examples}"""
11094
11091
skipna = nv .validate_cum_func_with_skipna (skipna , args , kwargs , name )
11095
11092
if axis is None :
11096
11093
axis = self ._stat_axis_number
@@ -11139,11 +11136,11 @@ def _make_logical_function(
11139
11136
)
11140
11137
def logical_func (self , axis = 0 , bool_only = None , skipna = True , level = None , ** kwargs ):
11141
11138
"""
11142
- {desc}
11139
+ {desc}
11143
11140
11144
- Parameters
11145
- ----------
11146
- axis : {{0 or 'index', 1 or 'columns', None}}, default 0
11141
+ Parameters
11142
+ ----------
11143
+ axis : {{0 or 'index', 1 or 'columns', None}}, default 0
11147
11144
Indicate which axis or axes should be reduced.
11148
11145
11149
11146
* 0 / 'index' : reduce the index, return a Series whose index is the
@@ -11152,30 +11149,29 @@ def logical_func(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs
11152
11149
original index.
11153
11150
* None : reduce all axes, return a scalar.
11154
11151
11155
- bool_only : bool, default None
11152
+ bool_only : bool, default None
11156
11153
Include only boolean columns. If None, will attempt to use everything,
11157
11154
then use only boolean data. Not implemented for Series.
11158
- skipna : bool, default True
11155
+ skipna : bool, default True
11159
11156
Exclude NA/null values. If the entire row/column is NA and skipna is
11160
11157
True, then the result will be {empty_value}, as for an empty row/column.
11161
11158
If skipna is False, then NA are treated as True, because these are not
11162
11159
equal to zero.
11163
- level : int or level name, default None
11160
+ level : int or level name, default None
11164
11161
If the axis is a MultiIndex (hierarchical), count along a
11165
11162
particular level, collapsing into a {name1}.
11166
- **kwargs : any, default None
11163
+ **kwargs : any, default None
11167
11164
Additional keywords have no effect but might be accepted for
11168
11165
compatibility with NumPy.
11169
11166
11170
- Returns
11171
- -------
11172
- {name1} or {name2}
11167
+ Returns
11168
+ -------
11169
+ {name1} or {name2}
11173
11170
If level is specified, then, {name2} is returned; otherwise, {name1}
11174
11171
is returned.
11175
11172
11176
- {see_also}
11177
- {examples}
11178
- """
11173
+ {see_also}
11174
+ {examples}"""
11179
11175
nv .validate_logical_func (tuple (), kwargs , fname = name )
11180
11176
if level is not None :
11181
11177
if bool_only is not None :
0 commit comments