|
| 1 | +import string |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytest |
| 5 | + |
| 6 | +import pandas as pd |
| 7 | +import pandas.util.testing as tm |
| 8 | + |
| 9 | +UNARY_UFUNCS = [np.positive, np.floor, np.exp] |
| 10 | +BINARY_UFUNCS = [np.add, np.logaddexp] # -> dunder op |
| 11 | +SPARSE = [ |
| 12 | + pytest.param(True, |
| 13 | + marks=pytest.mark.xfail(reason="Series.__array_ufunc__")), |
| 14 | + False, |
| 15 | +] |
| 16 | +SPARSE_IDS = ['sparse', 'dense'] |
| 17 | +SHUFFLE = [ |
| 18 | + pytest.param(True, marks=pytest.mark.xfail(reason="GH-26945")), |
| 19 | + False |
| 20 | +] |
| 21 | + |
| 22 | + |
| 23 | +@pytest.fixture |
| 24 | +def arrays_for_binary_ufunc(): |
| 25 | + """ |
| 26 | + A pair of random, length-100 integer-dtype arrays, that are mostly 0. |
| 27 | + """ |
| 28 | + a1 = np.random.randint(0, 10, 100) |
| 29 | + a2 = np.random.randint(0, 10, 100) |
| 30 | + a1[::3] = 0 |
| 31 | + a2[::4] = 0 |
| 32 | + return a1, a2 |
| 33 | + |
| 34 | + |
| 35 | +@pytest.mark.parametrize("ufunc", UNARY_UFUNCS) |
| 36 | +@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS) |
| 37 | +def test_unary_ufunc(ufunc, sparse): |
| 38 | + array = np.random.randint(0, 10, 10) |
| 39 | + array[::2] = 0 |
| 40 | + if sparse: |
| 41 | + array = pd.SparseArray(array, dtype=pd.SparseDtype('int', 0)) |
| 42 | + |
| 43 | + index = list(string.ascii_letters[:10]) |
| 44 | + name = "name" |
| 45 | + series = pd.Series(array, index=index, name=name) |
| 46 | + |
| 47 | + result = ufunc(series) |
| 48 | + expected = pd.Series(ufunc(array), index=index, name=name) |
| 49 | + tm.assert_series_equal(result, expected) |
| 50 | + |
| 51 | + |
| 52 | +@pytest.mark.parametrize("ufunc", BINARY_UFUNCS) |
| 53 | +@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS) |
| 54 | +@pytest.mark.parametrize("shuffle", SHUFFLE) |
| 55 | +@pytest.mark.parametrize("box_other", [True, False]) |
| 56 | +def test_binary_ufunc(ufunc, sparse, shuffle, box_other, |
| 57 | + arrays_for_binary_ufunc): |
| 58 | + # Check the invariant that |
| 59 | + # ufunc(Series(a), Series(b)) == Series(ufunc(a, b)) |
| 60 | + # with alignment. |
| 61 | + a1, a2 = arrays_for_binary_ufunc |
| 62 | + if sparse: |
| 63 | + a1 = pd.SparseArray(a1, dtype=pd.SparseDtype('int', 0)) |
| 64 | + a2 = pd.SparseArray(a2, dtype=pd.SparseDtype('int', 0)) |
| 65 | + |
| 66 | + name = "name" |
| 67 | + # TODO: verify name when the differ? Take the first? Drop? |
| 68 | + s1 = pd.Series(a1, name=name) |
| 69 | + s2 = pd.Series(a2, name=name) |
| 70 | + |
| 71 | + # handle shufling / alignment |
| 72 | + # If boxing -- ufunc(series, series) -- then we don't need to shuffle |
| 73 | + # the other array for the expected, since we align. |
| 74 | + # If not boxing -- ufunc(series, array) -- then we do need to shuffle |
| 75 | + # the other array, since we *dont'* align |
| 76 | + idx = np.random.permutation(len(s1)) |
| 77 | + if box_other and shuffle: |
| 78 | + # ensure we align before applying the ufunc |
| 79 | + s2 = s2.take(idx) |
| 80 | + elif shuffle: |
| 81 | + a2 = a2.take(idx) |
| 82 | + |
| 83 | + result = ufunc(s1, s2) |
| 84 | + expected = pd.Series(ufunc(a1, a2), name=name) |
| 85 | + tm.assert_series_equal(result, expected) |
| 86 | + |
| 87 | + |
| 88 | +@pytest.mark.parametrize("ufunc", BINARY_UFUNCS) |
| 89 | +@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS) |
| 90 | +@pytest.mark.parametrize("flip", [True, False]) |
| 91 | +def test_binary_ufunc_scalar(ufunc, sparse, flip, arrays_for_binary_ufunc): |
| 92 | + array, _ = arrays_for_binary_ufunc |
| 93 | + if sparse: |
| 94 | + array = pd.SparseArray(array) |
| 95 | + other = 2 |
| 96 | + series = pd.Series(array, name="name") |
| 97 | + |
| 98 | + a, b = series, other |
| 99 | + c, d = array, other |
| 100 | + if flip: |
| 101 | + c, d = b, c |
| 102 | + a, b = b, a |
| 103 | + |
| 104 | + expected = pd.Series(ufunc(a, b), name="name") |
| 105 | + result = pd.Series(ufunc(c, d), name="name") |
| 106 | + tm.assert_series_equal(result, expected) |
| 107 | + |
| 108 | + |
| 109 | +@pytest.mark.parametrize("ufunc", [np.divmod]) # any others? |
| 110 | +@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS) |
| 111 | +@pytest.mark.parametrize("shuffle", SHUFFLE) |
| 112 | +@pytest.mark.filterwarnings("ignore:divide by zero:RuntimeWarning") |
| 113 | +def test_multiple_ouput_binary_ufuncs(ufunc, sparse, shuffle, |
| 114 | + arrays_for_binary_ufunc): |
| 115 | + a1, a2 = arrays_for_binary_ufunc |
| 116 | + |
| 117 | + if sparse: |
| 118 | + a1 = pd.SparseArray(a1, dtype=pd.SparseDtype('int', 0)) |
| 119 | + a2 = pd.SparseArray(a2, dtype=pd.SparseDtype('int', 0)) |
| 120 | + |
| 121 | + s1 = pd.Series(a1) |
| 122 | + s2 = pd.Series(a2) |
| 123 | + |
| 124 | + if shuffle: |
| 125 | + # ensure we align before applying the ufunc |
| 126 | + s2 = s2.sample(frac=1) |
| 127 | + |
| 128 | + expected = ufunc(a1, a2) |
| 129 | + assert isinstance(expected, tuple) |
| 130 | + |
| 131 | + result = ufunc(s1, s2) |
| 132 | + assert isinstance(result, tuple) |
| 133 | + tm.assert_series_equal(result[0], pd.Series(expected[0])) |
| 134 | + tm.assert_series_equal(result[1], pd.Series(expected[1])) |
| 135 | + |
| 136 | + |
| 137 | +@pytest.mark.parametrize("sparse", SPARSE, ids=SPARSE_IDS) |
| 138 | +def test_multiple_ouput_ufunc(sparse, arrays_for_binary_ufunc): |
| 139 | + array, _ = arrays_for_binary_ufunc |
| 140 | + |
| 141 | + if sparse: |
| 142 | + array = pd.SparseArray(array) |
| 143 | + |
| 144 | + series = pd.Series(array, name="name") |
| 145 | + result = np.modf(series) |
| 146 | + expected = np.modf(array) |
| 147 | + |
| 148 | + assert isinstance(result, tuple) |
| 149 | + assert isinstance(expected, tuple) |
| 150 | + |
| 151 | + tm.assert_series_equal(result[0], pd.Series(expected[0], name="name")) |
| 152 | + tm.assert_series_equal(result[1], pd.Series(expected[1], name="name")) |
0 commit comments