@@ -301,14 +301,14 @@ For example, setting $c = \frac{\pi}{10}$ gives us a very elegant cloud shape, w
301
301
302
302
``` {code-cell} ipython3
303
303
output = julia(mesh, c=np.pi/10, num_iter=20)
304
- kwargs = {'title': 'f(z) = z^2 + \dfrac{\pi}{10}', 'cmap': 'plasma'}
304
+ kwargs = {'title': r 'f(z) = z^2 + \dfrac{\pi}{10}', 'cmap': 'plasma'}
305
305
306
306
plot_fractal(output, **kwargs);
307
307
```
308
308
309
309
``` {code-cell} ipython3
310
310
output = julia(mesh, c=-0.75 + 0.4j, num_iter=20)
311
- kwargs = {'title': 'f(z) = z^2 - \dfrac{3}{4} + 0.4i', 'cmap': 'Greens_r'}
311
+ kwargs = {'title': r 'f(z) = z^2 - \dfrac{3}{4} + 0.4i', 'cmap': 'Greens_r'}
312
312
313
313
plot_fractal(output, **kwargs);
314
314
```
@@ -419,7 +419,7 @@ p.deriv()
419
419
420
420
``` {code-cell} ipython3
421
421
output = newton_fractal(mesh, p, p.deriv(), num_iter=15, r=2)
422
- kwargs = {'title': 'f(z) = z - \dfrac{(z^8 + 15z^4 - 16)}{(8z^7 + 60z^3)}', 'cmap': 'copper'}
422
+ kwargs = {'title': r 'f(z) = z - \dfrac{(z^8 + 15z^4 - 16)}{(8z^7 + 60z^3)}', 'cmap': 'copper'}
423
423
424
424
plot_fractal(output, **kwargs)
425
425
```
@@ -443,7 +443,7 @@ def d_tan(z):
443
443
444
444
``` {code-cell} ipython3
445
445
output = newton_fractal(mesh, f_tan, d_tan, num_iter=15, r=50)
446
- kwargs = {'title': 'f(z) = z - \dfrac{sin(z)cos(z)}{2}', 'cmap': 'binary'}
446
+ kwargs = {'title': r 'f(z) = z - \dfrac{sin(z)cos(z)}{2}', 'cmap': 'binary'}
447
447
448
448
plot_fractal(output, **kwargs);
449
449
```
0 commit comments