diff --git a/doc/devel/python_interface_devel.rst b/doc/devel/python_interface_devel.rst index a63bc2e90a..1c5f1667a2 100644 --- a/doc/devel/python_interface_devel.rst +++ b/doc/devel/python_interface_devel.rst @@ -41,7 +41,7 @@ do is to define inputs, outputs, _run_interface() (not run()), and _list_outputs thresholded_map = np.zeros(data.shape) thresholded_map[active_map] = data[active_map] - new_img = nb.Nifti1Image(thresholded_map, img.get_affine(), img.get_header()) + new_img = nb.Nifti1Image(thresholded_map, img.affine, img.header) _, base, _ = split_filename(fname) nb.save(new_img, base + '_thresholded.nii') diff --git a/examples/dmri_camino_dti.py b/examples/dmri_camino_dti.py index bf94ebdae9..20392d9bf5 100755 --- a/examples/dmri_camino_dti.py +++ b/examples/dmri_camino_dti.py @@ -39,7 +39,7 @@ def get_vox_dims(volume): if isinstance(volume, list): volume = volume[0] nii = nb.load(volume) - hdr = nii.get_header() + hdr = nii.header voxdims = hdr.get_zooms() return [float(voxdims[0]), float(voxdims[1]), float(voxdims[2])] @@ -49,7 +49,7 @@ def get_data_dims(volume): if isinstance(volume, list): volume = volume[0] nii = nb.load(volume) - hdr = nii.get_header() + hdr = nii.header datadims = hdr.get_data_shape() return [int(datadims[0]), int(datadims[1]), int(datadims[2])] @@ -57,7 +57,7 @@ def get_data_dims(volume): def get_affine(volume): import nibabel as nb nii = nb.load(volume) - return nii.get_affine() + return nii.affine subject_list = ['subj1'] fsl.FSLCommand.set_default_output_type('NIFTI') diff --git a/examples/dmri_connectivity.py b/examples/dmri_connectivity.py index 35c7ee3c39..4b7debff8f 100755 --- a/examples/dmri_connectivity.py +++ b/examples/dmri_connectivity.py @@ -77,7 +77,7 @@ def get_vox_dims(volume): if isinstance(volume, list): volume = volume[0] nii = nb.load(volume) - hdr = nii.get_header() + hdr = nii.header voxdims = hdr.get_zooms() return [float(voxdims[0]), float(voxdims[1]), float(voxdims[2])] @@ -87,7 +87,7 @@ def get_data_dims(volume): if isinstance(volume, list): volume = volume[0] nii = nb.load(volume) - hdr = nii.get_header() + hdr = nii.header datadims = hdr.get_data_shape() return [int(datadims[0]), int(datadims[1]), int(datadims[2])] @@ -95,7 +95,7 @@ def get_data_dims(volume): def get_affine(volume): import nibabel as nb nii = nb.load(volume) - return nii.get_affine() + return nii.affine def select_aparc(list_of_files): diff --git a/examples/fmri_ants_openfmri.py b/examples/fmri_ants_openfmri.py index 8c9cbdcdd0..8c8e050097 100755 --- a/examples/fmri_ants_openfmri.py +++ b/examples/fmri_ants_openfmri.py @@ -80,8 +80,8 @@ def median(in_files): average = data else: average = average + data - median_img = nb.Nifti1Image(average / float(idx + 1), - img.get_affine(), img.get_header()) + median_img = nb.Nifti1Image(average / float(idx + 1), img.affine, + img.header) filename = os.path.join(os.getcwd(), 'median.nii.gz') median_img.to_filename(filename) return filename diff --git a/examples/fmri_fsl.py b/examples/fmri_fsl.py index d33deaab24..89dd96c627 100755 --- a/examples/fmri_fsl.py +++ b/examples/fmri_fsl.py @@ -108,7 +108,7 @@ def getmiddlevolume(func): funcfile = func if isinstance(func, list): funcfile = func[0] - _, _, _, timepoints = load(funcfile).get_shape() + _, _, _, timepoints = load(funcfile).shape return int(timepoints / 2) - 1 preproc.connect(inputnode, ('func', getmiddlevolume), extract_ref, 't_min') diff --git a/examples/fmri_spm_auditory.py b/examples/fmri_spm_auditory.py index 9933277f0f..94b6f1a565 100755 --- a/examples/fmri_spm_auditory.py +++ b/examples/fmri_spm_auditory.py @@ -123,7 +123,7 @@ def get_vox_dims(volume): if isinstance(volume, list): volume = volume[0] nii = nb.load(volume) - hdr = nii.get_header() + hdr = nii.header voxdims = hdr.get_zooms() return [float(voxdims[0]), float(voxdims[1]), float(voxdims[2])] diff --git a/examples/fmri_spm_face.py b/examples/fmri_spm_face.py index 7f918aafa7..942bace0ff 100755 --- a/examples/fmri_spm_face.py +++ b/examples/fmri_spm_face.py @@ -117,7 +117,7 @@ def get_vox_dims(volume): if isinstance(volume, list): volume = volume[0] nii = nb.load(volume) - hdr = nii.get_header() + hdr = nii.header voxdims = hdr.get_zooms() return [float(voxdims[0]), float(voxdims[1]), float(voxdims[2])] diff --git a/examples/rsfmri_vol_surface_preprocessing.py b/examples/rsfmri_vol_surface_preprocessing.py index 953d07595f..c375278629 100644 --- a/examples/rsfmri_vol_surface_preprocessing.py +++ b/examples/rsfmri_vol_surface_preprocessing.py @@ -125,8 +125,8 @@ def median(in_files): average = data else: average = average + data - median_img = nb.Nifti1Image(average / float(idx + 1), - img.get_affine(), img.get_header()) + median_img = nb.Nifti1Image(average / float(idx + 1), img.affine, + img.header) filename = os.path.join(os.getcwd(), 'median.nii.gz') median_img.to_filename(filename) return filename @@ -165,8 +165,7 @@ def bandpass_filter(files, lowpass_freq, highpass_freq, fs): filtered_data = data else: filtered_data = np.real(np.fft.ifftn(np.fft.fftn(data) * F)) - img_out = nb.Nifti1Image(filtered_data, img.get_affine(), - img.get_header()) + img_out = nb.Nifti1Image(filtered_data, img.affine, img.header) img_out.to_filename(out_file) out_files.append(out_file) return list_to_filename(out_files) diff --git a/examples/rsfmri_vol_surface_preprocessing_nipy.py b/examples/rsfmri_vol_surface_preprocessing_nipy.py index d3ace02535..477e1e377c 100644 --- a/examples/rsfmri_vol_surface_preprocessing_nipy.py +++ b/examples/rsfmri_vol_surface_preprocessing_nipy.py @@ -119,8 +119,8 @@ def median(in_files): average = data else: average = average + data - median_img = nb.Nifti1Image(average / float(idx + 1), - img.get_affine(), img.get_header()) + median_img = nb.Nifti1Image(average / float(idx + 1), img.affine, + img.header) filename = os.path.join(os.getcwd(), 'median.nii.gz') median_img.to_filename(filename) return filename @@ -156,8 +156,7 @@ def bandpass_filter(files, lowpass_freq, highpass_freq, fs): filtered_data = data else: filtered_data = np.real(np.fft.ifftn(np.fft.fftn(data) * F)) - img_out = nb.Nifti1Image(filtered_data, img.get_affine(), - img.get_header()) + img_out = nb.Nifti1Image(filtered_data, img.affine, img.header) img_out.to_filename(out_file) out_files.append(out_file) return list_to_filename(out_files) diff --git a/nipype/algorithms/icc.py b/nipype/algorithms/icc.py index 98758dfcbf..af61c260b9 100644 --- a/nipype/algorithms/icc.py +++ b/nipype/algorithms/icc.py @@ -49,19 +49,19 @@ def _run_interface(self, runtime): icc[x], subject_var[x], session_var[x], session_F[x], _, _ = ICC_rep_anova(Y) nim = nb.load(self.inputs.subjects_sessions[0][0]) - new_data = np.zeros(nim.get_shape()) + new_data = np.zeros(nim.shape) new_data[maskdata] = icc.reshape(-1,) - new_img = nb.Nifti1Image(new_data, nim.get_affine(), nim.get_header()) + new_img = nb.Nifti1Image(new_data, nim.affine, nim.header) nb.save(new_img, 'icc_map.nii') - new_data = np.zeros(nim.get_shape()) + new_data = np.zeros(nim.shape) new_data[maskdata] = session_var.reshape(-1,) - new_img = nb.Nifti1Image(new_data, nim.get_affine(), nim.get_header()) + new_img = nb.Nifti1Image(new_data, nim.affine, nim.header) nb.save(new_img, 'session_var_map.nii') - new_data = np.zeros(nim.get_shape()) + new_data = np.zeros(nim.shape) new_data[maskdata] = subject_var.reshape(-1,) - new_img = nb.Nifti1Image(new_data, nim.get_affine(), nim.get_header()) + new_img = nb.Nifti1Image(new_data, nim.affine, nim.header) nb.save(new_img, 'subject_var_map.nii') return runtime diff --git a/nipype/algorithms/mesh.py b/nipype/algorithms/mesh.py index ed51d7bf13..ecf5dd59a2 100644 --- a/nipype/algorithms/mesh.py +++ b/nipype/algorithms/mesh.py @@ -111,13 +111,12 @@ def _run_interface(self, runtime): points = np.array(mesh.points) warp_dims = nb.funcs.four_to_three(nb.load(self.inputs.warp)) - affine = warp_dims[0].get_affine() - voxsize = warp_dims[0].get_header().get_zooms() + affine = warp_dims[0].affine + voxsize = warp_dims[0].header.get_zooms() vox2ras = affine[0:3, 0:3] ras2vox = np.linalg.inv(vox2ras) origin = affine[0:3, 3] - voxpoints = np.array([np.dot(ras2vox, - (p - origin)) for p in points]) + voxpoints = np.array([np.dot(ras2vox, (p - origin)) for p in points]) warps = [] for axis in warp_dims: diff --git a/nipype/algorithms/metrics.py b/nipype/algorithms/metrics.py index 746919e06e..bbc8ea8d59 100644 --- a/nipype/algorithms/metrics.py +++ b/nipype/algorithms/metrics.py @@ -92,9 +92,9 @@ def _eucl_min(self, nii1, nii2): origdata2 = nii2.get_data().astype(np.bool) border2 = self._find_border(origdata2) - set1_coordinates = self._get_coordinates(border1, nii1.get_affine()) + set1_coordinates = self._get_coordinates(border1, nii1.affine) - set2_coordinates = self._get_coordinates(border2, nii2.get_affine()) + set2_coordinates = self._get_coordinates(border2, nii2.affine) dist_matrix = cdist(set1_coordinates.T, set2_coordinates.T) (point1, point2) = np.unravel_index( @@ -108,7 +108,7 @@ def _eucl_cog(self, nii1, nii2): origdata1 = nii1.get_data().astype(np.bool) cog_t = np.array(center_of_mass(origdata1)).reshape(-1, 1) cog_t = np.vstack((cog_t, np.array([1]))) - cog_t_coor = np.dot(nii1.get_affine(), cog_t)[:3, :] + cog_t_coor = np.dot(nii1.affine, cog_t)[:3, :] origdata2 = nii2.get_data().astype(np.bool) (labeled_data, n_labels) = label(origdata2) @@ -119,7 +119,7 @@ def _eucl_cog(self, nii1, nii2): cogs[:3, i] = np.array(center_of_mass(origdata2, labeled_data, i + 1)) - cogs_coor = np.dot(nii2.get_affine(), cogs)[:3, :] + cogs_coor = np.dot(nii2.affine, cogs)[:3, :] dist_matrix = cdist(cog_t_coor.T, cogs_coor.T) @@ -131,8 +131,8 @@ def _eucl_mean(self, nii1, nii2, weighted=False): origdata2 = nii2.get_data().astype(np.bool) - set1_coordinates = self._get_coordinates(border1, nii1.get_affine()) - set2_coordinates = self._get_coordinates(origdata2, nii2.get_affine()) + set1_coordinates = self._get_coordinates(border1, nii1.affine) + set2_coordinates = self._get_coordinates(origdata2, nii2.affine) dist_matrix = cdist(set1_coordinates.T, set2_coordinates.T) min_dist_matrix = np.amin(dist_matrix, axis=0) @@ -172,8 +172,8 @@ def _eucl_max(self, nii1, nii2): border1 = self._find_border(origdata1) border2 = self._find_border(origdata2) - set1_coordinates = self._get_coordinates(border1, nii1.get_affine()) - set2_coordinates = self._get_coordinates(border2, nii2.get_affine()) + set1_coordinates = self._get_coordinates(border1, nii1.affine) + set2_coordinates = self._get_coordinates(border2, nii2.affine) distances = cdist(set1_coordinates.T, set2_coordinates.T) mins = np.concatenate( (np.amin(distances, axis=0), np.amin(distances, axis=1))) @@ -283,7 +283,7 @@ def _run_interface(self, runtime): scale = 1.0 if self.inputs.vol_units == 'mm': - voxvol = nii1.get_header().get_zooms() + voxvol = nii1.header.get_zooms() for i in range(nii1.get_data().ndim - 1): scale = scale * voxvol[i] @@ -330,8 +330,8 @@ def _run_interface(self, runtime): both_data = np.zeros(data1.shape) both_data[(data1 - data2) != 0] = 1 - nb.save(nb.Nifti1Image(both_data, nii1.get_affine(), - nii1.get_header()), self.inputs.out_file) + nb.save(nb.Nifti1Image(both_data, nii1.affine, nii1.header), + self.inputs.out_file) self._labels = labels self._ove_rois = results @@ -452,8 +452,9 @@ def _run_interface(self, runtime): ch[msk == 0] = 0 diff += w * ch - nb.save(nb.Nifti1Image(diff, nb.load(self.inputs.in_ref[0]).get_affine(), - nb.load(self.inputs.in_ref[0]).get_header()), self.inputs.out_file) + nb.save(nb.Nifti1Image(diff, nb.load(self.inputs.in_ref[0]).affine, + nb.load(self.inputs.in_ref[0]).header), + self.inputs.out_file) return runtime @@ -549,7 +550,7 @@ def _run_interface(self, runtime): errmap = errvectorexp.reshape(mapshape) - hdr = nii_ref.get_header().copy() + hdr = nii_ref.header.copy() hdr.set_data_dtype(np.float32) hdr['data_type'] = 16 hdr.set_data_shape(mapshape) @@ -563,7 +564,7 @@ def _run_interface(self, runtime): else: self._out_file = self.inputs.out_map - nb.Nifti1Image(errmap.astype(np.float32), nii_ref.get_affine(), + nb.Nifti1Image(errmap.astype(np.float32), nii_ref.affine, hdr).to_filename(self._out_file) return runtime diff --git a/nipype/algorithms/misc.py b/nipype/algorithms/misc.py index e4e41326ce..84a905b065 100644 --- a/nipype/algorithms/misc.py +++ b/nipype/algorithms/misc.py @@ -111,7 +111,7 @@ def _get_brodmann_area(self): 1, 2 * self.inputs.dilation_size + 1)) - return nb.Nifti1Image(newdata, nii.get_affine(), nii.get_header()) + return nb.Nifti1Image(newdata, nii.affine, nii.header) def _list_outputs(self): outputs = self._outputs().get() @@ -150,8 +150,7 @@ def _run_interface(self, runtime): thresholded_map = np.zeros(data.shape) thresholded_map[active_map] = data[active_map] - new_img = nb.Nifti1Image( - thresholded_map, img.get_affine(), img.get_header()) + new_img = nb.Nifti1Image(thresholded_map, img.affine, img.header) _, base, _ = split_filename(fname) nb.save(new_img, base + '_thresholded.nii') @@ -201,11 +200,11 @@ def _run_interface(self, runtime): for fname in self.inputs.volumes: img = nb.load(fname) - affine = img.get_affine() + affine = img.affine affine = np.dot(self.inputs.transformation_matrix, affine) - nb.save(nb.Nifti1Image(img.get_data(), affine, - img.get_header()), self._gen_output_filename(fname)) + nb.save(nb.Nifti1Image(img.get_data(), affine, img.header), + self._gen_output_filename(fname)) return runtime @@ -300,15 +299,15 @@ def _gen_output_file_name(self, suffix=None): def _run_interface(self, runtime): img = nb.load(self.inputs.in_file[0]) - header = img.get_header().copy() + header = img.header.copy() vollist = [nb.load(filename) for filename in self.inputs.in_file] data = np.concatenate([vol.get_data().reshape( - vol.get_shape()[:3] + (-1,)) for vol in vollist], axis=3) + vol.shape[:3] + (-1,)) for vol in vollist], axis=3) if data.dtype.kind == 'i': header.set_data_dtype(np.float32) data = data.astype(np.float32) if isdefined(self.inputs.regress_poly): - timepoints = img.get_shape()[-1] + timepoints = img.shape[-1] X = np.ones((timepoints, 1)) for i in range(self.inputs.regress_poly): X = np.hstack((X, legendre( @@ -319,16 +318,16 @@ def _run_interface(self, runtime): betas[1:, :, :, :], 0, 3)), 0, 4) data = data - datahat - img = nb.Nifti1Image(data, img.get_affine(), header) + img = nb.Nifti1Image(data, img.affine, header) nb.save(img, self._gen_output_file_name('detrended')) meanimg = np.mean(data, axis=3) stddevimg = np.std(data, axis=3) tsnr = meanimg / stddevimg - img = nb.Nifti1Image(tsnr, img.get_affine(), header) + img = nb.Nifti1Image(tsnr, img.affine, header) nb.save(img, self._gen_output_file_name()) - img = nb.Nifti1Image(meanimg, img.get_affine(), header) + img = nb.Nifti1Image(meanimg, img.affine, header) nb.save(img, self._gen_output_file_name('mean')) - img = nb.Nifti1Image(stddevimg, img.get_affine(), header) + img = nb.Nifti1Image(stddevimg, img.affine, header) nb.save(img, self._gen_output_file_name('stddev')) return runtime @@ -1023,7 +1022,7 @@ def _run_interface(self, runtime): result = self.gen_noise(in_data, mask=in_mask, snr_db=snr, dist=self.inputs.dist, bg_dist=self.inputs.bg_dist) - res_im = nb.Nifti1Image(result, in_image.get_affine(), in_image.get_header()) + res_im = nb.Nifti1Image(result, in_image.affine, in_image.header) res_im.to_filename(self._gen_output_filename()) return runtime @@ -1257,10 +1256,11 @@ def normalize_tpms(in_files, in_mask=None, out_files=[]): if len(in_files) == 1: img_data = imgs[0].get_data() img_data[img_data > 0.0] = 1.0 - hdr = imgs[0].get_header().copy() + hdr = imgs[0].header.copy() hdr['data_type'] = 16 hdr.set_data_dtype(np.float32) - nib.save(nib.Nifti1Image(img_data.astype(np.float32), imgs[0].get_affine(), hdr), out_files[0]) + nib.save(nib.Nifti1Image(img_data.astype(np.float32), imgs[0].affine, + hdr), out_files[0]) return out_files[0] img_data = np.array([im.get_data() for im in imgs]).astype(np.float32) @@ -1281,10 +1281,11 @@ def normalize_tpms(in_files, in_mask=None, out_files=[]): for i, out_file in enumerate(out_files): data = np.ma.masked_equal(img_data[i], 0) probmap = data / weights - hdr = imgs[i].get_header().copy() + hdr = imgs[i].header.copy() hdr['data_type'] = 16 hdr.set_data_dtype('float32') - nib.save(nib.Nifti1Image(probmap.astype(np.float32), imgs[i].get_affine(), hdr), out_file) + nib.save(nib.Nifti1Image(probmap.astype(np.float32), imgs[i].affine, + hdr), out_file) return out_files @@ -1302,7 +1303,7 @@ def split_rois(in_file, mask=None, roishape=None): roishape = (10, 10, 1) im = nb.load(in_file) - imshape = im.get_shape() + imshape = im.shape dshape = imshape[:3] nvols = imshape[-1] roisize = roishape[0] * roishape[1] * roishape[2] @@ -1391,9 +1392,9 @@ def merge_rois(in_files, in_idxs, in_ref, pass ref = nb.load(in_ref) - aff = ref.get_affine() - hdr = ref.get_header().copy() - rsh = ref.get_shape() + aff = ref.affine + hdr = ref.header.copy() + rsh = ref.shape del ref npix = rsh[0] * rsh[1] * rsh[2] fcdata = nb.load(in_files[0]).get_data() diff --git a/nipype/algorithms/modelgen.py b/nipype/algorithms/modelgen.py index 2fa95a3605..93aaeb042c 100644 --- a/nipype/algorithms/modelgen.py +++ b/nipype/algorithms/modelgen.py @@ -355,7 +355,7 @@ def _generate_standard_design(self, infolist, for i, out in enumerate(outliers): numscans = 0 for f in filename_to_list(sessinfo[i]['scans']): - shape = load(f).get_shape() + shape = load(f).shape if len(shape) == 3 or shape[3] == 1: iflogger.warning(("You are using 3D instead of 4D " "files. Are you sure this was " @@ -459,7 +459,7 @@ def _concatenate_info(self, infolist): numscans = len(f) elif isinstance(f, string_types): img = load(f) - numscans = img.get_shape()[3] + numscans = img.shape[3] else: raise Exception('Functional input not specified correctly') nscans.insert(i, numscans) @@ -779,7 +779,7 @@ def _generate_clustered_design(self, infolist): infoout[i].durations = None if info.conditions: img = load(self.inputs.functional_runs[i]) - nscans = img.get_shape()[3] + nscans = img.shape[3] reg, regnames = self._cond_to_regress(info, nscans) if hasattr(infoout[i], 'regressors') and infoout[i].regressors: if not infoout[i].regressor_names: diff --git a/nipype/algorithms/rapidart.py b/nipype/algorithms/rapidart.py index 435b3c99e5..06ad009d50 100644 --- a/nipype/algorithms/rapidart.py +++ b/nipype/algorithms/rapidart.py @@ -362,10 +362,10 @@ def _detect_outliers_core(self, imgfile, motionfile, runidx, cwd=None): nim = funcs.concat_images(images) # compute global intensity signal - (x, y, z, timepoints) = nim.get_shape() + (x, y, z, timepoints) = nim.shape data = nim.get_data() - affine = nim.get_affine() + affine = nim.affine g = np.zeros((timepoints, 1)) masktype = self.inputs.mask_type if masktype == 'spm_global': # spm_global like calculation @@ -397,7 +397,7 @@ def _detect_outliers_core(self, imgfile, motionfile, runidx, cwd=None): elif masktype == 'file': # uses a mask image to determine intensity maskimg = load(self.inputs.mask_file) mask = maskimg.get_data() - affine = maskimg.get_affine() + affine = maskimg.affine mask = mask > 0.5 for t0 in range(timepoints): vol = data[:, :, :, t0] diff --git a/nipype/algorithms/tests/test_normalize_tpms.py b/nipype/algorithms/tests/test_normalize_tpms.py index 56bd4e7ebf..d044eff77c 100644 --- a/nipype/algorithms/tests/test_normalize_tpms.py +++ b/nipype/algorithms/tests/test_normalize_tpms.py @@ -37,8 +37,8 @@ def test_normalize_tpms(): data = im.get_data() mapdata.append(data.copy()) - nb.Nifti1Image(2.0 * (data * mskdata), im.get_affine(), - im.get_header()).to_filename(filename) + nb.Nifti1Image(2.0 * (data * mskdata), im.affine, + im.header).to_filename(filename) in_files.append(filename) normalize_tpms(in_files, in_mask, out_files=out_files) diff --git a/nipype/algorithms/tests/test_splitmerge.py b/nipype/algorithms/tests/test_splitmerge.py index 0f874cbdce..89af22afe7 100644 --- a/nipype/algorithms/tests/test_splitmerge.py +++ b/nipype/algorithms/tests/test_splitmerge.py @@ -19,7 +19,7 @@ def test_split_and_merge(): in_mask = example_data('tpms_msk.nii.gz') dwfile = op.join(tmpdir, 'dwi.nii.gz') mskdata = nb.load(in_mask).get_data() - aff = nb.load(in_mask).get_affine() + aff = nb.load(in_mask).affine dwshape = (mskdata.shape[0], mskdata.shape[1], mskdata.shape[2], 6) dwdata = np.random.normal(size=dwshape) diff --git a/nipype/interfaces/cmtk/cmtk.py b/nipype/interfaces/cmtk/cmtk.py index 3da9c3bf2f..f527cccc0a 100644 --- a/nipype/interfaces/cmtk/cmtk.py +++ b/nipype/interfaces/cmtk/cmtk.py @@ -187,7 +187,7 @@ def cmat(track_file, roi_file, resolution_network_file, matrix_name, matrix_mat_ roi = nb.load(roi_file) roiData = roi.get_data() - roiVoxelSize = roi.get_header().get_zooms() + roiVoxelSize = roi.header.get_zooms() (endpoints, endpointsmm) = create_endpoints_array(fib, roiVoxelSize) # Output endpoint arrays @@ -706,7 +706,8 @@ def _run_interface(self, runtime): GMlabelDict['a'] = LUTlabelDict[label][4] labelDict[label] = GMlabelDict - roi_image = nb.Nifti1Image(niiGM, niiAPARCimg.get_affine(), niiAPARCimg.get_header()) + roi_image = nb.Nifti1Image(niiGM, niiAPARCimg.affine, + niiAPARCimg.header) iflogger.info('Saving ROI File to {path}'.format(path=roi_file)) nb.save(roi_image, roi_file) diff --git a/nipype/interfaces/cmtk/parcellation.py b/nipype/interfaces/cmtk/parcellation.py index 2297177e01..80b0e72ab0 100644 --- a/nipype/interfaces/cmtk/parcellation.py +++ b/nipype/interfaces/cmtk/parcellation.py @@ -263,12 +263,12 @@ def create_roi(subject_id, subjects_dir, fs_dir, parcellation_name, dilation): out_roi = op.abspath('ROI_%s.nii.gz' % parcellation_name) # update the header - hdr = aseg.get_header() + hdr = aseg.header hdr2 = hdr.copy() hdr2.set_data_dtype(np.uint16) log.info("Save output image to %s" % out_roi) - img = nb.Nifti1Image(rois, aseg.get_affine(), hdr2) + img = nb.Nifti1Image(rois, aseg.affine, hdr2) nb.save(img, out_roi) iflogger.info("[ DONE ]") @@ -294,7 +294,7 @@ def create_roi(subject_id, subjects_dir, fs_dir, parcellation_name, dilation): # store volume eg in ROIv_scale33.nii.gz out_roi = op.abspath('ROIv_%s.nii.gz' % parcellation_name) iflogger.info("Save output image to %s" % out_roi) - img = nb.Nifti1Image(rois, aseg.get_affine(), hdr2) + img = nb.Nifti1Image(rois, aseg.affine, hdr2) nb.save(img, out_roi) iflogger.info("[ DONE ]") @@ -437,7 +437,7 @@ def create_wm_mask(subject_id, subjects_dir, fs_dir, parcellation_name): # output white matter mask. crop and move it afterwards wm_out = op.join(fs_dir, 'mri', 'fsmask_1mm.nii.gz') - img = nb.Nifti1Image(wmmask, fsmask.get_affine(), fsmask.get_header()) + img = nb.Nifti1Image(wmmask, fsmask.affine, fsmask.header) iflogger.info("Save white matter mask: %s" % wm_out) nb.save(img, wm_out) diff --git a/nipype/interfaces/dipy/preprocess.py b/nipype/interfaces/dipy/preprocess.py index ef7c7451f4..885a97a93a 100644 --- a/nipype/interfaces/dipy/preprocess.py +++ b/nipype/interfaces/dipy/preprocess.py @@ -181,9 +181,9 @@ def resample_proxy(in_file, order=3, new_zooms=None, out_file=None): out_file = op.abspath('./%s_reslice%s' % (fname, fext)) img = nb.load(in_file) - hdr = img.get_header().copy() + hdr = img.header.copy() data = img.get_data().astype(np.float32) - affine = img.get_affine() + affine = img.affine im_zooms = hdr.get_zooms()[:3] if new_zooms is None: @@ -220,9 +220,9 @@ def nlmeans_proxy(in_file, settings, out_file = op.abspath('./%s_denoise%s' % (fname, fext)) img = nb.load(in_file) - hdr = img.get_header() + hdr = img.header data = img.get_data() - aff = img.get_affine() + aff = img.affine nmask = data[..., 0] > 80 if noise_mask is not None: diff --git a/nipype/interfaces/dipy/simulate.py b/nipype/interfaces/dipy/simulate.py index 569adb1a8c..939d7d15a4 100644 --- a/nipype/interfaces/dipy/simulate.py +++ b/nipype/interfaces/dipy/simulate.py @@ -116,9 +116,9 @@ def _run_interface(self, runtime): # Load the baseline b0 signal b0_im = nb.load(self.inputs.baseline) - hdr = b0_im.get_header() - shape = b0_im.get_shape() - aff = b0_im.get_affine() + hdr = b0_im.header + shape = b0_im.shape + aff = b0_im.affine # Check and load sticks and their volume fractions nsticks = len(self.inputs.in_dirs) diff --git a/nipype/interfaces/dipy/tensors.py b/nipype/interfaces/dipy/tensors.py index 067c300d62..edafea1306 100644 --- a/nipype/interfaces/dipy/tensors.py +++ b/nipype/interfaces/dipy/tensors.py @@ -49,7 +49,7 @@ def tensor_fitting(data, bvals, bvecs, mask_file=None): """ img = nb.load(in_file) data = img.get_data() - affine = img.get_affine() + affine = img.affine if mask_file is not None: mask = nb.load(self.inputs.mask_file).get_data() else: diff --git a/nipype/interfaces/dipy/tracks.py b/nipype/interfaces/dipy/tracks.py index 6851da7de2..7daff72589 100644 --- a/nipype/interfaces/dipy/tracks.py +++ b/nipype/interfaces/dipy/tracks.py @@ -75,8 +75,8 @@ def _run_interface(self, runtime): if isdefined(self.inputs.reference): refnii = nb.load(self.inputs.reference) - affine = refnii.get_affine() - data_dims = refnii.get_shape()[:3] + affine = refnii.affine + data_dims = refnii.shape[:3] kwargs = dict(affine=affine) else: iflogger.warn(('voxel_dims and data_dims are deprecated' @@ -103,10 +103,8 @@ def _run_interface(self, runtime): iflogger.info( ('Track density map saved as {i}, size={d}, ' - 'dimensions={v}').format( - i=out_file, - d=img.get_shape(), - v=img.get_header().get_zooms())) + 'dimensions={v}').format(i=out_file, d=img.shape, + v=img.header.get_zooms())) return runtime def _list_outputs(self): diff --git a/nipype/interfaces/elastix/utils.py b/nipype/interfaces/elastix/utils.py index 541cfa1ec4..ab034dac07 100644 --- a/nipype/interfaces/elastix/utils.py +++ b/nipype/interfaces/elastix/utils.py @@ -91,20 +91,20 @@ def _run_interface(self, runtime): if isdefined(self.inputs.reference_image): im = nb.load(self.inputs.reference_image) - if len(im.get_header().get_zooms()) == 4: + if len(im.header.get_zooms()) == 4: im = nb.func.four_to_three(im)[0] - size = ' '.join(["%01d" % s for s in im.get_shape()]) + size = ' '.join(["%01d" % s for s in im.shape]) p = re.compile((self._pattern % 'Size').decode('string-escape')) rep = '(\g%s\g<3>' % size contents = p.sub(rep, contents) - index = ' '.join(["0" for s in im.get_shape()]) + index = ' '.join(["0" for s in im.shape]) p = re.compile((self._pattern % 'Index').decode('string-escape')) rep = '(\g%s\g<3>' % index contents = p.sub(rep, contents) - spacing = ' '.join(["%0.4f" % f for f in im.get_header().get_zooms()]) + spacing = ' '.join(["%0.4f" % f for f in im.header.get_zooms()]) p = re.compile((self._pattern % 'Spacing').decode('string-escape')) rep = '(\g%s\g<3>' % spacing contents = p.sub(rep, contents) @@ -113,7 +113,7 @@ def _run_interface(self, runtime): itkmat[0, 0] = -1 itkmat[1, 1] = -1 - affine = np.dot(itkmat, im.get_affine()) + affine = np.dot(itkmat, im.affine) dirs = ' '.join(['%0.4f' % f for f in affine[0:3, 0:3].reshape(-1)]) orig = ' '.join(['%0.4f' % f for f in affine[0:3, 3].reshape(-1)]) diff --git a/nipype/interfaces/freesurfer/preprocess.py b/nipype/interfaces/freesurfer/preprocess.py index 619edde594..21dc798b5a 100644 --- a/nipype/interfaces/freesurfer/preprocess.py +++ b/nipype/interfaces/freesurfer/preprocess.py @@ -378,7 +378,7 @@ def _list_outputs(self): outputs = self.output_spec().get() outfile = self._get_outfilename() if isdefined(self.inputs.split) and self.inputs.split: - size = load(self.inputs.in_file).get_shape() + size = load(self.inputs.in_file).shape if len(size) == 3: tp = 1 else: @@ -398,7 +398,7 @@ def _list_outputs(self): if isdefined(self.inputs.out_type): if self.inputs.out_type in ['spm', 'analyze']: # generate all outputs - size = load(self.inputs.in_file).get_shape() + size = load(self.inputs.in_file).shape if len(size) == 3: tp = 1 else: diff --git a/nipype/interfaces/fsl/epi.py b/nipype/interfaces/fsl/epi.py index 2823cce3ff..1b119d3391 100644 --- a/nipype/interfaces/fsl/epi.py +++ b/nipype/interfaces/fsl/epi.py @@ -105,8 +105,8 @@ def _run_interface(self, runtime): if runtime.returncode == 0: out_file = self.inputs.out_fieldmap im = nib.load(out_file) - dumb_img = nib.Nifti1Image(np.zeros(im.get_shape()), - im.get_affine(), im.get_header()) + dumb_img = nib.Nifti1Image(np.zeros(im.shape), im.affine, + im.header) out_nii = nib.funcs.concat_images((im, dumb_img)) nib.save(out_nii, out_file) diff --git a/nipype/interfaces/fsl/model.py b/nipype/interfaces/fsl/model.py index 62e16e9319..96d0746d17 100644 --- a/nipype/interfaces/fsl/model.py +++ b/nipype/interfaces/fsl/model.py @@ -318,7 +318,7 @@ def _run_interface(self, runtime): self.inputs.contrasts, no_bases, do_tempfilter) nim = load(func_files[i]) - (_, _, _, timepoints) = nim.get_shape() + (_, _, _, timepoints) = nim.shape fsf_txt = fsf_header.substitute(run_num=i, interscan_interval=self.inputs.interscan_interval, num_vols=timepoints, diff --git a/nipype/interfaces/fsl/preprocess.py b/nipype/interfaces/fsl/preprocess.py index 65540646e1..1f3137085e 100644 --- a/nipype/interfaces/fsl/preprocess.py +++ b/nipype/interfaces/fsl/preprocess.py @@ -696,7 +696,7 @@ def _list_outputs(self): if isdefined(self.inputs.save_mats) and self.inputs.save_mats: _, filename = os.path.split(outputs['out_file']) matpathname = os.path.join(cwd, filename + '.mat') - _, _, _, timepoints = load(self.inputs.in_file).get_shape() + _, _, _, timepoints = load(self.inputs.in_file).shape outputs['mat_file'] = [] for t in range(timepoints): outputs['mat_file'].append(os.path.join(matpathname, diff --git a/nipype/interfaces/mrtrix/convert.py b/nipype/interfaces/mrtrix/convert.py index 711ea2107b..89cf1c2299 100644 --- a/nipype/interfaces/mrtrix/convert.py +++ b/nipype/interfaces/mrtrix/convert.py @@ -184,7 +184,7 @@ def _run_interface(self, runtime): dx, dy, dz = get_data_dims(self.inputs.image_file) vx, vy, vz = get_vox_dims(self.inputs.image_file) image_file = nb.load(self.inputs.image_file) - affine = image_file.get_affine() + affine = image_file.affine out_filename = op.abspath(self.inputs.out_filename) # Reads MRTrix tracks @@ -202,7 +202,7 @@ def _run_interface(self, runtime): xfm = np.genfromtxt(self.inputs.matrix_file) iflogger.info(xfm) registration_image_file = nb.load(self.inputs.registration_image_file) - reg_affine = registration_image_file.get_affine() + reg_affine = registration_image_file.affine r_dx, r_dy, r_dz = get_data_dims(self.inputs.registration_image_file) r_vx, r_vy, r_vz = get_vox_dims(self.inputs.registration_image_file) iflogger.info('Using affine from registration image file {r}'.format(r=self.inputs.registration_image_file)) diff --git a/nipype/interfaces/nipy/model.py b/nipype/interfaces/nipy/model.py index 7fba0b26c7..f6ff113530 100644 --- a/nipype/interfaces/nipy/model.py +++ b/nipype/interfaces/nipy/model.py @@ -164,19 +164,19 @@ def _run_interface(self, runtime): self._beta_file = os.path.abspath("beta.nii") beta = np.zeros(mask.shape + (glm.beta.shape[0],)) beta[mask, :] = glm.beta.T - nb.save(nb.Nifti1Image(beta, nii.get_affine()), self._beta_file) + nb.save(nb.Nifti1Image(beta, nii.affine), self._beta_file) self._s2_file = os.path.abspath("s2.nii") s2 = np.zeros(mask.shape) s2[mask] = glm.s2 - nb.save(nb.Nifti1Image(s2, nii.get_affine()), self._s2_file) + nb.save(nb.Nifti1Image(s2, nii.affine), self._s2_file) if self.inputs.save_residuals: explained = np.dot(design_matrix, glm.beta) residuals = np.zeros(mask.shape + (nscans,)) residuals[mask, :] = timeseries - explained.T self._residuals_file = os.path.abspath("residuals.nii") - nb.save(nb.Nifti1Image(residuals, nii.get_affine()), self._residuals_file) + nb.save(nb.Nifti1Image(residuals, nii.affine), self._residuals_file) self._nvbeta = glm.nvbeta self._dof = glm.dof @@ -186,7 +186,7 @@ def _run_interface(self, runtime): self._a_file = os.path.abspath("a.nii") a = np.zeros(mask.shape) a[mask] = glm.a.squeeze() - nb.save(nb.Nifti1Image(a, nii.get_affine()), self._a_file) + nb.save(nb.Nifti1Image(a, nii.affine), self._a_file) self._model = glm.model self._method = glm.method @@ -295,19 +295,19 @@ def _run_interface(self, runtime): stat_map = np.zeros(mask.shape) stat_map[mask] = est_contrast.stat().T stat_map_file = os.path.abspath(name + "_stat_map.nii") - nb.save(nb.Nifti1Image(stat_map, nii.get_affine()), stat_map_file) + nb.save(nb.Nifti1Image(stat_map, nii.affine), stat_map_file) self._stat_maps.append(stat_map_file) p_map = np.zeros(mask.shape) p_map[mask] = est_contrast.pvalue().T p_map_file = os.path.abspath(name + "_p_map.nii") - nb.save(nb.Nifti1Image(p_map, nii.get_affine()), p_map_file) + nb.save(nb.Nifti1Image(p_map, nii.affine), p_map_file) self._p_maps.append(p_map_file) z_map = np.zeros(mask.shape) z_map[mask] = est_contrast.zscore().T z_map_file = os.path.abspath(name + "_z_map.nii") - nb.save(nb.Nifti1Image(z_map, nii.get_affine()), z_map_file) + nb.save(nb.Nifti1Image(z_map, nii.affine), z_map_file) self._z_maps.append(z_map_file) return runtime diff --git a/nipype/interfaces/nipy/preprocess.py b/nipype/interfaces/nipy/preprocess.py index 6016181ee0..49a493f02c 100644 --- a/nipype/interfaces/nipy/preprocess.py +++ b/nipype/interfaces/nipy/preprocess.py @@ -65,8 +65,8 @@ def _run_interface(self, runtime): brain_mask = compute_mask(**args) _, name, ext = split_filename(self.inputs.mean_volume) self._brain_mask_path = os.path.abspath("%s_mask.%s" % (name, ext)) - nb.save(nb.Nifti1Image(brain_mask.astype(np.uint8), - nii.get_affine()), self._brain_mask_path) + nb.save(nb.Nifti1Image(brain_mask.astype(np.uint8), nii.affine), + self._brain_mask_path) return runtime @@ -371,10 +371,7 @@ def _run_interface(self, runtime): s = slice(self.inputs.begin_index, nii.shape[3]) else: s = slice(self.inputs.begin_index, self.inputs.end_index) - nii2 = nb.Nifti1Image( - nii.get_data()[..., s], - nii.get_affine(), - nii.get_header()) + nii2 = nb.Nifti1Image(nii.get_data()[..., s], nii.affine, nii.header) nb.save(nii2, out_file) return runtime diff --git a/nipype/interfaces/spm/base.py b/nipype/interfaces/spm/base.py index 44fc7ca7ac..0ca470d0ed 100644 --- a/nipype/interfaces/spm/base.py +++ b/nipype/interfaces/spm/base.py @@ -46,7 +46,7 @@ def func_is_3d(in_file): return func_is_3d(in_file[0]) else: img = load(in_file) - shape = img.get_shape() + shape = img.shape if len(shape) == 3 or (len(shape) == 4 and shape[3] == 1): return True else: @@ -74,10 +74,10 @@ def scans_for_fname(fname): scans[sno] = '%s,1' % f return scans img = load(fname) - if len(img.get_shape()) == 3: + if len(img.shape) == 3: return np.array(('%s,1' % fname,), dtype=object) else: - n_scans = img.get_shape()[3] + n_scans = img.shape[3] scans = np.zeros((n_scans,), dtype=object) for sno in range(n_scans): scans[sno] = '%s,%d' % (fname, sno + 1) diff --git a/nipype/workflows/dmri/dipy/denoise.py b/nipype/workflows/dmri/dipy/denoise.py index 7b7afc47ee..68c27d0d89 100644 --- a/nipype/workflows/dmri/dipy/denoise.py +++ b/nipype/workflows/dmri/dipy/denoise.py @@ -64,7 +64,7 @@ def csf_mask(in_file, in_mask, out_file=None): out_file = op.abspath("%s_csfmask%s" % (fname, ext)) im = nb.load(in_file) - hdr = im.get_header().copy() + hdr = im.header.copy() hdr.set_data_dtype(np.uint8) hdr.set_xyzt_units('mm') imdata = im.get_data() @@ -84,8 +84,8 @@ def csf_mask(in_file, in_mask, out_file=None): remove_pixel = mask_size[label_im] label_im[remove_pixel] = 0 label_im[label_im > 0] = 1 - nb.Nifti1Image(label_im.astype(np.uint8), - im.get_affine(), hdr).to_filename(out_file) + nb.Nifti1Image(label_im.astype(np.uint8), im.affine, + hdr).to_filename(out_file) return out_file @@ -107,13 +107,11 @@ def bg_mask(in_file, in_mask, out_file=None): out_file = op.abspath("%s_bgmask%s" % (fname, ext)) im = nb.load(in_file) - hdr = im.get_header().copy() + hdr = im.header.copy() hdr.set_data_dtype(np.uint8) hdr.set_xyzt_units('mm') imdata = im.get_data() msk = nb.load(in_mask).get_data() - msk = 1 - binary_dilation(msk, - structure=np.ones((20, 20, 20))) - nb.Nifti1Image(msk.astype(np.uint8), - im.get_affine(), hdr).to_filename(out_file) + msk = 1 - binary_dilation(msk, structure=np.ones((20, 20, 20))) + nb.Nifti1Image(msk.astype(np.uint8), im.affine, hdr).to_filename(out_file) return out_file diff --git a/nipype/workflows/dmri/fsl/artifacts.py b/nipype/workflows/dmri/fsl/artifacts.py index dc7387f0c0..03a1b0c31c 100644 --- a/nipype/workflows/dmri/fsl/artifacts.py +++ b/nipype/workflows/dmri/fsl/artifacts.py @@ -899,7 +899,7 @@ def _xfm_jacobian(in_xfm): def _get_zoom(in_file, enc_dir): import nibabel as nb - zooms = nb.load(in_file).get_header().get_zooms() + zooms = nb.load(in_file).header.get_zooms() if 'y' in enc_dir: return zooms[1] diff --git a/nipype/workflows/dmri/fsl/epi.py b/nipype/workflows/dmri/fsl/epi.py index bfeb2afeb9..f62fabb792 100644 --- a/nipype/workflows/dmri/fsl/epi.py +++ b/nipype/workflows/dmri/fsl/epi.py @@ -731,8 +731,7 @@ def _prepare_phasediff(in_file): if fext == '.gz': name, _ = os.path.splitext(name) out_file = os.path.abspath('./%s_2pi.nii.gz' % name) - nib.save(nib.Nifti1Image( - diff_norm, img.get_affine(), img.get_header()), out_file) + nib.save(nib.Nifti1Image(diff_norm, img.affine, img.header), out_file) return out_file @@ -756,8 +755,7 @@ def _fill_phase(in_file): import os import numpy as np img = nib.load(in_file) - dumb_img = nib.Nifti1Image(np.zeros( - img.get_shape()), img.get_affine(), img.get_header()) + dumb_img = nib.Nifti1Image(np.zeros(img.shape), img.affine, img.header) out_nii = nib.funcs.concat_images((img, dumb_img)) name, fext = os.path.splitext(os.path.basename(in_file)) if fext == '.gz': @@ -778,7 +776,7 @@ def _vsm_remove_mean(in_file, mask_file, in_unwarped): img_data[msk == 0] = 0 vsmmag_masked = ma.masked_values(img_data.reshape(-1), 0.0) vsmmag_masked = vsmmag_masked - vsmmag_masked.mean() - img._data = vsmmag_masked.reshape(img.get_shape()) + img._data = vsmmag_masked.reshape(img.shape) name, fext = os.path.splitext(os.path.basename(in_file)) if fext == '.gz': name, _ = os.path.splitext(name) diff --git a/nipype/workflows/dmri/fsl/tbss.py b/nipype/workflows/dmri/fsl/tbss.py index 504334c2d3..c0e2faa096 100644 --- a/nipype/workflows/dmri/fsl/tbss.py +++ b/nipype/workflows/dmri/fsl/tbss.py @@ -14,7 +14,7 @@ def tbss1_op_string(in_files): op_strings = [] for infile in in_files: img = nib.load(infile) - dimtup = tuple([d - 2 for d in img.get_shape()]) + dimtup = tuple(d - 2 for d in img.shape) dimtup = dimtup[0:3] op_str = '-min 1 -ero -roi 1 %d 1 %d 1 %d 0 1' % dimtup op_strings.append(op_str) diff --git a/nipype/workflows/dmri/fsl/utils.py b/nipype/workflows/dmri/fsl/utils.py index c7cff21521..72c92b565a 100644 --- a/nipype/workflows/dmri/fsl/utils.py +++ b/nipype/workflows/dmri/fsl/utils.py @@ -228,10 +228,9 @@ def extract_bval(in_dwi, in_bval, b=0, out_file=None): selection = np.where(bvals == b) extdata = np.squeeze(dwidata.take(selection, axis=3)) - hdr = im.get_header().copy() + hdr = im.header.copy() hdr.set_data_shape(extdata.shape) - nb.Nifti1Image(extdata, im.get_affine(), - hdr).to_filename(out_file) + nb.Nifti1Image(extdata, im.affine, hdr).to_filename(out_file) return out_file @@ -247,7 +246,7 @@ def hmc_split(in_file, in_bval, ref_num=0, lowbval=5.0): im = nb.load(in_file) data = im.get_data() - hdr = im.get_header().copy() + hdr = im.header.copy() bval = np.loadtxt(in_bval) lowbs = np.where(bval <= lowbval)[0] @@ -273,10 +272,10 @@ def hmc_split(in_file, in_bval, ref_num=0, lowbval=5.0): refdata = data[..., volid] hdr.set_data_shape(refdata.shape) - nb.Nifti1Image(refdata, im.get_affine(), hdr).to_filename(out_ref) + nb.Nifti1Image(refdata, im.affine, hdr).to_filename(out_ref) hdr.set_data_shape(data.shape) - nb.Nifti1Image(data, im.get_affine(), hdr).to_filename(out_mov) + nb.Nifti1Image(data, im.affine, hdr).to_filename(out_mov) np.savetxt(out_bval, bval) return [out_ref, out_mov, out_bval, volid] @@ -298,7 +297,7 @@ def remove_comp(in_file, in_bval, volid=0, out_file=None): im = nb.load(in_file) data = im.get_data() - hdr = im.get_header().copy() + hdr = im.header.copy() bval = np.loadtxt(in_bval) if volid == 0: @@ -312,7 +311,7 @@ def remove_comp(in_file, in_bval, volid=0, out_file=None): axis=3) bval = np.hstack((bval[:volid], bval[(volid + 1):])) hdr.set_data_shape(data.shape) - nb.Nifti1Image(data, im.get_affine(), hdr).to_filename(out_file) + nb.Nifti1Image(data, im.affine, hdr).to_filename(out_file) out_bval = op.abspath('bval_extract.txt') np.savetxt(out_bval, bval) @@ -357,8 +356,7 @@ def recompose_dwi(in_dwi, in_bval, in_corrected, out_file=None): for bindex, dwi in zip(dwis, in_corrected): dwidata[..., bindex] = nb.load(dwi).get_data() - nb.Nifti1Image(dwidata, im.get_affine(), - im.get_header()).to_filename(out_file) + nb.Nifti1Image(dwidata, im.affine, im.header).to_filename(out_file) return out_file @@ -415,11 +413,11 @@ def time_avg(in_file, index=[0], out_file=None): data = np.average(np.array([im.get_data().astype(np.float32) for im in imgs]), axis=0) - hdr = imgs[0].get_header().copy() + hdr = imgs[0].header.copy() hdr.set_data_shape(data.shape) hdr.set_xyzt_units('mm') hdr.set_data_dtype(np.float32) - nb.Nifti1Image(data, imgs[0].get_affine(), hdr).to_filename(out_file) + nb.Nifti1Image(data, imgs[0].affine, hdr).to_filename(out_file) return out_file @@ -461,11 +459,11 @@ def b0_average(in_dwi, in_bval, max_b=10.0, out_file=None): for im in imgs[index]] b0 = np.average(np.array(b0s), axis=0) - hdr = imgs[0].get_header().copy() + hdr = imgs[0].header.copy() hdr.set_data_shape(b0.shape) hdr.set_xyzt_units('mm') hdr.set_data_dtype(np.float32) - nb.Nifti1Image(b0, imgs[0].get_affine(), hdr).to_filename(out_file) + nb.Nifti1Image(b0, imgs[0].affine, hdr).to_filename(out_file) return out_file @@ -598,7 +596,7 @@ def siemens2rads(in_file, out_file=None): in_file = np.atleast_1d(in_file).tolist() im = nb.load(in_file[0]) data = im.get_data().astype(np.float32) - hdr = im.get_header().copy() + hdr = im.header.copy() if len(in_file) == 2: data = nb.load(in_file[1]).get_data().astype(np.float32) - data @@ -612,7 +610,7 @@ def siemens2rads(in_file, out_file=None): hdr.set_data_dtype(np.float32) hdr.set_xyzt_units('mm') hdr['datatype'] = 16 - nb.Nifti1Image(data, im.get_affine(), hdr).to_filename(out_file) + nb.Nifti1Image(data, im.affine, hdr).to_filename(out_file) return out_file @@ -633,8 +631,7 @@ def rads2radsec(in_file, delta_te, out_file=None): im = nb.load(in_file) data = im.get_data().astype(np.float32) * (1.0 / delta_te) - nb.Nifti1Image(data, im.get_affine(), - im.get_header()).to_filename(out_file) + nb.Nifti1Image(data, im.affine, im.header).to_filename(out_file) return out_file @@ -664,8 +661,7 @@ def demean_image(in_file, in_mask=None, out_file=None): mean = np.median(data[msk == 1].reshape(-1)) data[msk == 1] = data[msk == 1] - mean - nb.Nifti1Image(data, im.get_affine(), - im.get_header()).to_filename(out_file) + nb.Nifti1Image(data, im.affine, im.header).to_filename(out_file) return out_file @@ -685,8 +681,8 @@ def add_empty_vol(in_file, out_file=None): out_file = op.abspath('./%s_4D.nii.gz' % fname) im = nb.load(in_file) - zim = nb.Nifti1Image(np.zeros_like(im.get_data()), im.get_affine(), - im.get_header()) + zim = nb.Nifti1Image(np.zeros_like(im.get_data()), im.affine, + im.header) nb.funcs.concat_images([im, zim]).to_filename(out_file) return out_file @@ -707,8 +703,8 @@ def reorient_bvecs(in_dwi, old_dwi, in_bvec): bvecs = np.loadtxt(in_bvec).T new_bvecs = [] - N = nb.load(in_dwi).get_affine() - O = nb.load(old_dwi).get_affine() + N = nb.load(in_dwi).affine + O = nb.load(old_dwi).affine RS = N.dot(np.linalg.inv(O))[:3, :3] sc_idx = np.where((np.abs(RS) != 1) & (RS != 0)) S = np.ones_like(RS) @@ -732,12 +728,12 @@ def copy_hdr(in_file, in_file_hdr, out_file=None): out_file = op.abspath('./%s_fixhdr.nii.gz' % fname) imref = nb.load(in_file_hdr) - hdr = imref.get_header().copy() + hdr = imref.header.copy() hdr.set_data_dtype(np.float32) vsm = nb.load(in_file).get_data().astype(np.float32) hdr.set_data_shape(vsm.shape) hdr.set_xyzt_units('mm') - nii = nb.Nifti1Image(vsm, imref.get_affine(), hdr) + nii = nb.Nifti1Image(vsm, imref.affine, hdr) nii.to_filename(out_file) return out_file @@ -756,7 +752,7 @@ def enhance(in_file, clip_limit=0.010, in_mask=None, out_file=None): im = nb.load(in_file) imdata = im.get_data() - imshape = im.get_shape() + imshape = im.shape if in_mask is not None: msk = nb.load(in_mask).get_data() @@ -770,8 +766,8 @@ def enhance(in_file, clip_limit=0.010, in_mask=None, out_file=None): adapted = exposure.equalize_adapthist(imdata.reshape(imshape[0], -1), clip_limit=clip_limit) - nb.Nifti1Image(adapted.reshape(imshape), im.get_affine(), - im.get_header()).to_filename(out_file) + nb.Nifti1Image(adapted.reshape(imshape), im.affine, + im.header).to_filename(out_file) return out_file diff --git a/nipype/workflows/fmri/fsl/estimate.py b/nipype/workflows/fmri/fsl/estimate.py index ef2a3c44d0..a600f63350 100644 --- a/nipype/workflows/fmri/fsl/estimate.py +++ b/nipype/workflows/fmri/fsl/estimate.py @@ -251,15 +251,15 @@ def get_dofvolumes(dof_files, cope_files): import nibabel as nb import numpy as np img = nb.load(cope_files[0]) - if len(img.get_shape()) > 3: - out_data = np.zeros(img.get_shape()) + if len(img.shape) > 3: + out_data = np.zeros(img.shape) else: - out_data = np.zeros(list(img.get_shape()) + [1]) + out_data = np.zeros(list(img.shape) + [1]) for i in range(out_data.shape[-1]): dof = np.loadtxt(dof_files[i]) out_data[:, :, :, i] = dof filename = os.path.join(os.getcwd(), 'dof_file.nii.gz') - newimg = nb.Nifti1Image(out_data, None, img.get_header()) + newimg = nb.Nifti1Image(out_data, None, img.header) newimg.to_filename(filename) return filename diff --git a/nipype/workflows/fmri/fsl/preprocess.py b/nipype/workflows/fmri/fsl/preprocess.py index 6ac1d7b86d..4915d93444 100644 --- a/nipype/workflows/fmri/fsl/preprocess.py +++ b/nipype/workflows/fmri/fsl/preprocess.py @@ -29,7 +29,7 @@ def pickmiddle(files): import numpy as np middlevol = [] for f in files: - middlevol.append(int(np.ceil(load(f).get_shape()[3] / 2))) + middlevol.append(int(np.ceil(load(f).shape[3] / 2))) return middlevol @@ -39,9 +39,9 @@ def pickvol(filenames, fileidx, which): if which.lower() == 'first': idx = 0 elif which.lower() == 'middle': - idx = int(np.ceil(load(filenames[fileidx]).get_shape()[3] / 2)) + idx = int(np.ceil(load(filenames[fileidx]).shape[3] / 2)) elif which.lower() == 'last': - idx = load(filenames[fileidx]).get_shape()[3] - 1 + idx = load(filenames[fileidx]).shape[3] - 1 else: raise Exception('unknown value for volume selection : %s' % which) return idx diff --git a/nipype/workflows/fmri/spm/preprocess.py b/nipype/workflows/fmri/spm/preprocess.py index 34060fc6d3..c1f533323d 100644 --- a/nipype/workflows/fmri/spm/preprocess.py +++ b/nipype/workflows/fmri/spm/preprocess.py @@ -191,7 +191,7 @@ def compute_icv(class_images): from numpy import prod icv = [] for session in class_images: - voxel_volume = prod(load(session[0][0]).get_header().get_zooms()) + voxel_volume = prod(load(session[0][0]).header.get_zooms()) img = load(session[0][0]).get_data() + \ load(session[1][0]).get_data() + \ load(session[2][0]).get_data() diff --git a/nipype/workflows/misc/utils.py b/nipype/workflows/misc/utils.py index cc3e196f15..640e6b0221 100644 --- a/nipype/workflows/misc/utils.py +++ b/nipype/workflows/misc/utils.py @@ -10,7 +10,7 @@ def get_vox_dims(volume): if isinstance(volume, list): volume = volume[0] nii = nb.load(volume) - hdr = nii.get_header() + hdr = nii.header voxdims = hdr.get_zooms() return [float(voxdims[0]), float(voxdims[1]), float(voxdims[2])] @@ -20,7 +20,7 @@ def get_data_dims(volume): if isinstance(volume, list): volume = volume[0] nii = nb.load(volume) - hdr = nii.get_header() + hdr = nii.header datadims = hdr.get_data_shape() return [int(datadims[0]), int(datadims[1]), int(datadims[2])] @@ -28,7 +28,7 @@ def get_data_dims(volume): def get_affine(volume): import nibabel as nb nii = nb.load(volume) - return nii.get_affine() + return nii.affine def select_aparc(list_of_files): diff --git a/nipype/workflows/rsfmri/fsl/resting.py b/nipype/workflows/rsfmri/fsl/resting.py index 8826a7ed9d..2bf8f28bd8 100644 --- a/nipype/workflows/rsfmri/fsl/resting.py +++ b/nipype/workflows/rsfmri/fsl/resting.py @@ -46,7 +46,7 @@ def select_volume(filename, which): if which.lower() == 'first': idx = 0 elif which.lower() == 'middle': - idx = int(np.ceil(load(filename).get_shape()[3] / 2)) + idx = int(np.ceil(load(filename).shape[3] / 2)) else: raise Exception('unknown value for volume selection : %s' % which) return idx