Skip to content

Commit d00267f

Browse files
committed
RF: Purge get_data from nipy, dipy interfaces
1 parent 46b8d6b commit d00267f

File tree

8 files changed

+33
-32
lines changed

8 files changed

+33
-32
lines changed

nipype/interfaces/dipy/anisotropic_power.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -43,11 +43,11 @@ def _run_interface(self, runtime):
4343
gtab = self._get_gradient_table()
4444

4545
img = nb.load(self.inputs.in_file)
46-
data = img.get_data()
46+
data = np.asanyarray(img.dataobj)
4747
affine = img.affine
4848
mask = None
4949
if isdefined(self.inputs.mask_file):
50-
mask = nb.load(self.inputs.mask_file).get_data()
50+
mask = np.asanyarray(nb.load(self.inputs.mask_file).dataobj)
5151

5252
# Fit it
5353
model = shm.QballModel(gtab, 8)

nipype/interfaces/dipy/preprocess.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -166,7 +166,7 @@ def _run_interface(self, runtime):
166166
settings = dict(mask=None, rician=(self.inputs.noise_model == "rician"))
167167

168168
if isdefined(self.inputs.in_mask):
169-
settings["mask"] = nb.load(self.inputs.in_mask).get_data()
169+
settings["mask"] = np.asanyarray(nb.load(self.inputs.in_mask).dataobj)
170170

171171
if isdefined(self.inputs.patch_radius):
172172
settings["patch_radius"] = self.inputs.patch_radius
@@ -180,10 +180,10 @@ def _run_interface(self, runtime):
180180

181181
signal_mask = None
182182
if isdefined(self.inputs.signal_mask):
183-
signal_mask = nb.load(self.inputs.signal_mask).get_data()
183+
signal_mask = np.asanyarray(nb.load(self.inputs.signal_mask).dataobj)
184184
noise_mask = None
185185
if isdefined(self.inputs.noise_mask):
186-
noise_mask = nb.load(self.inputs.noise_mask).get_data()
186+
noise_mask = np.asanyarray(nb.load(self.inputs.noise_mask).dataobj)
187187

188188
_, s = nlmeans_proxy(
189189
self.inputs.in_file,
@@ -224,7 +224,7 @@ def resample_proxy(in_file, order=3, new_zooms=None, out_file=None):
224224

225225
img = nb.load(in_file, mmap=NUMPY_MMAP)
226226
hdr = img.header.copy()
227-
data = img.get_data().astype(np.float32)
227+
data = img.get_fdata(dtype=np.float32)
228228
affine = img.affine
229229
im_zooms = hdr.get_zooms()[:3]
230230

@@ -264,7 +264,7 @@ def nlmeans_proxy(in_file, settings, snr=None, smask=None, nmask=None, out_file=
264264

265265
img = nb.load(in_file, mmap=NUMPY_MMAP)
266266
hdr = img.header
267-
data = img.get_data()
267+
data = img.get_fdata()
268268
aff = img.affine
269269

270270
if data.ndim < 4:

nipype/interfaces/dipy/reconstruction.py

Lines changed: 11 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -92,17 +92,19 @@ def _run_interface(self, runtime):
9292
img = nb.load(self.inputs.in_file)
9393
hdr = img.header.copy()
9494
affine = img.affine
95-
data = img.get_data()
95+
data = img.get_fdata()
9696
gtab = self._get_gradient_table()
9797

9898
if isdefined(self.inputs.in_mask):
99-
msk = nb.load(self.inputs.in_mask).get_data().astype(np.uint8)
99+
msk = np.asanyarray(nb.load(self.inputs.in_mask).dataobj).astype(np.uint8)
100100
else:
101101
msk = np.ones(data.shape[:3], dtype=np.uint8)
102102

103103
try_b0 = True
104104
if isdefined(self.inputs.noise_mask):
105-
noise_msk = nb.load(self.inputs.noise_mask).get_data().reshape(-1)
105+
noise_msk = (
106+
nb.load(self.inputs.noise_mask).get_fdata(dtype=np.float32).reshape(-1)
107+
)
106108
noise_msk[noise_msk > 0.5] = 1
107109
noise_msk[noise_msk < 1.0] = 0
108110
noise_msk = noise_msk.astype(np.uint8)
@@ -232,16 +234,16 @@ def _run_interface(self, runtime):
232234
affine = img.affine
233235

234236
if isdefined(self.inputs.in_mask):
235-
msk = nb.load(self.inputs.in_mask).get_data()
237+
msk = np.asanyarray(nb.load(self.inputs.in_mask).dataobj)
236238
msk[msk > 0] = 1
237239
msk[msk < 0] = 0
238240
else:
239241
msk = np.ones(imref.shape)
240242

241-
data = img.get_data().astype(np.float32)
243+
data = img.get_fdata(dtype=np.float32)
242244
gtab = self._get_gradient_table()
243245

244-
evals = np.nan_to_num(nb.load(self.inputs.in_evals).get_data())
246+
evals = np.nan_to_num(nb.load(self.inputs.in_evals).dataobj)
245247
FA = np.nan_to_num(fractional_anisotropy(evals)) * msk
246248
indices = np.where(FA > self.inputs.fa_thresh)
247249
S0s = data[indices][:, np.nonzero(gtab.b0s_mask)[0]]
@@ -260,7 +262,7 @@ def _run_interface(self, runtime):
260262
indices = np.logical_or(
261263
FA >= 0.4, (np.logical_and(FA >= 0.15, MD >= 0.0011))
262264
)
263-
data = nb.load(self.inputs.in_file).get_data()
265+
data = np.asanyarray(nb.load(self.inputs.in_file).dataobj)
264266
response = recursive_response(
265267
gtab,
266268
data,
@@ -359,11 +361,11 @@ def _run_interface(self, runtime):
359361
imref = nb.four_to_three(img)[0]
360362

361363
if isdefined(self.inputs.in_mask):
362-
msk = nb.load(self.inputs.in_mask).get_data()
364+
msk = np.asanyarray(nb.load(self.inputs.in_mask).dataobj)
363365
else:
364366
msk = np.ones(imref.shape)
365367

366-
data = img.get_data().astype(np.float32)
368+
data = img.get_fdata(dtype=np.float32)
367369

368370
gtab = self._get_gradient_table()
369371
resp_file = np.loadtxt(self.inputs.response)

nipype/interfaces/dipy/simulate.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -143,15 +143,15 @@ def _run_interface(self, runtime):
143143
vfs = np.squeeze(
144144
nb.concat_images(
145145
[nb.load(f, mmap=NUMPY_MMAP) for f in self.inputs.in_vfms]
146-
).get_data()
146+
).dataobj
147147
)
148148
if nballs == 1:
149149
vfs = vfs[..., np.newaxis]
150150
total_vf = np.sum(vfs, axis=3)
151151

152152
# Generate a mask
153153
if isdefined(self.inputs.in_mask):
154-
msk = nb.load(self.inputs.in_mask).get_data()
154+
msk = np.asanyarray(nb.load(self.inputs.in_mask).dataobj)
155155
msk[msk > 0.0] = 1.0
156156
msk[msk < 1.0] = 0.0
157157
else:
@@ -165,7 +165,7 @@ def _run_interface(self, runtime):
165165
ffsim = nb.concat_images(
166166
[nb.load(f, mmap=NUMPY_MMAP) for f in self.inputs.in_frac]
167167
)
168-
ffs = np.nan_to_num(np.squeeze(ffsim.get_data())) # fiber fractions
168+
ffs = np.nan_to_num(np.squeeze(ffsim.dataobj)) # fiber fractions
169169
ffs = np.clip(ffs, 0.0, 1.0)
170170
if nsticks == 1:
171171
ffs = ffs[..., np.newaxis]
@@ -207,7 +207,7 @@ def _run_interface(self, runtime):
207207
dirs = None
208208
for i in range(nsticks):
209209
f = self.inputs.in_dirs[i]
210-
fd = np.nan_to_num(nb.load(f, mmap=NUMPY_MMAP).get_data())
210+
fd = np.nan_to_num(nb.load(f, mmap=NUMPY_MMAP).dataobj)
211211
w = np.linalg.norm(fd, axis=3)[..., np.newaxis]
212212
w[w < np.finfo(float).eps] = 1.0
213213
fd /= w
@@ -230,7 +230,7 @@ def _run_interface(self, runtime):
230230

231231
mevals = [sf_evals] * nsticks + [[ba_evals[d]] * 3 for d in range(nballs)]
232232

233-
b0 = b0_im.get_data()[msk > 0]
233+
b0 = b0_im.get_fdata()[msk > 0]
234234
args = []
235235
for i in range(nvox):
236236
args.append(

nipype/interfaces/dipy/tensors.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -47,11 +47,11 @@ def _run_interface(self, runtime):
4747
gtab = self._get_gradient_table()
4848

4949
img = nb.load(self.inputs.in_file)
50-
data = img.get_data()
50+
data = img.get_fdata()
5151
affine = img.affine
5252
mask = None
5353
if isdefined(self.inputs.mask_file):
54-
mask = nb.load(self.inputs.mask_file).get_data()
54+
mask = np.asanyarray(nb.load(self.inputs.mask_file).dataobj)
5555

5656
# Fit it
5757
tenmodel = dti.TensorModel(gtab)
@@ -120,7 +120,7 @@ def _run_interface(self, runtime):
120120

121121
# Load the 4D image files
122122
img = nb.load(self.inputs.in_file)
123-
data = img.get_data()
123+
data = img.get_fdata()
124124
affine = img.affine
125125

126126
# Load the gradient strengths and directions

nipype/interfaces/dipy/tracks.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -233,7 +233,7 @@ def _run_interface(self, runtime):
233233
imref = nb.four_to_three(img)[0]
234234
affine = img.affine
235235

236-
data = img.get_data().astype(np.float32)
236+
data = img.get_fdata(dtype=np.float32)
237237
hdr = imref.header.copy()
238238
hdr.set_data_dtype(np.float32)
239239
hdr["data_type"] = 16
@@ -274,7 +274,7 @@ def _run_interface(self, runtime):
274274
IFLOGGER.info("Performing tractography")
275275

276276
if isdefined(self.inputs.tracking_mask):
277-
msk = nb.load(self.inputs.tracking_mask).get_data()
277+
msk = np.asanyarray(nb.load(self.inputs.tracking_mask).dataobj)
278278
msk[msk > 0] = 1
279279
msk[msk < 0] = 0
280280
else:
@@ -287,7 +287,7 @@ def _run_interface(self, runtime):
287287
seeds = np.loadtxt(self.inputs.seed_coord)
288288

289289
elif isdefined(self.inputs.seed_mask):
290-
seedmsk = nb.load(self.inputs.seed_mask).get_data()
290+
seedmsk = np.asanyarray(nb.load(self.inputs.seed_mask).dataobj)
291291
assert seedmsk.shape == data.shape[:3]
292292
seedmsk[seedmsk > 0] = 1
293293
seedmsk[seedmsk < 1] = 0

nipype/interfaces/nipy/preprocess.py

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -57,8 +57,7 @@ def _run_interface(self, runtime):
5757
value = getattr(self.inputs, key)
5858
if isdefined(value):
5959
if key in ["mean_volume", "reference_volume"]:
60-
nii = nb.load(value, mmap=NUMPY_MMAP)
61-
value = nii.get_data()
60+
value = np.asanyarray(nb.load(value, mmap=NUMPY_MMAP).dataobj)
6261
args[key] = value
6362

6463
brain_mask = compute_mask(**args)
@@ -264,7 +263,7 @@ def _run_interface(self, runtime):
264263
s = slice(self.inputs.begin_index, nii.shape[3])
265264
else:
266265
s = slice(self.inputs.begin_index, self.inputs.end_index)
267-
nii2 = nb.Nifti1Image(nii.get_data()[..., s], nii.affine, nii.header)
266+
nii2 = nb.Nifti1Image(nii.dataobj[..., s], nii.affine, nii.header)
268267
nb.save(nii2, out_file)
269268
return runtime
270269

nipype/interfaces/nipy/utils.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -74,12 +74,12 @@ def _run_interface(self, runtime):
7474
vol2_nii = nb.load(self.inputs.volume2)
7575

7676
if isdefined(self.inputs.mask1):
77-
mask1 = nb.load(self.inputs.mask1).get_data() == 1
77+
mask1 = np.asanyarray(nb.load(self.inputs.mask1).dataobj) == 1
7878
else:
7979
mask1 = None
8080

8181
if isdefined(self.inputs.mask2):
82-
mask2 = nb.load(self.inputs.mask2).get_data() == 1
82+
mask2 = np.asanyarray(nb.load(self.inputs.mask2).dataobj) == 2
8383
else:
8484
mask2 = None
8585

0 commit comments

Comments
 (0)