@@ -38,16 +38,16 @@ def _run_interface(self, runtime):
38
38
maskdata = np .logical_not (np .logical_or (maskdata == 0 , np .isnan (maskdata )))
39
39
40
40
session_datas = [[nb .load (fname ).get_data ()[maskdata ].reshape (- 1 , 1 ) for fname in sessions ] for sessions in self .inputs .subjects_sessions ]
41
- list_of_sessions = [np .hstack (session_data ) for session_data in session_datas ]
42
- all_data = np .dstack (list_of_sessions )
41
+ list_of_sessions = [np .dstack (session_data ) for session_data in session_datas ]
42
+ all_data = np .hstack (list_of_sessions )
43
43
icc = np .zeros (session_datas [0 ][0 ].shape )
44
44
session_F = np .zeros (session_datas [0 ][0 ].shape )
45
45
session_var = np .zeros (session_datas [0 ][0 ].shape )
46
46
subject_var = np .zeros (session_datas [0 ][0 ].shape )
47
47
48
48
for x in range (icc .shape [0 ]):
49
49
Y = all_data [x , :, :]
50
- icc [x ], session_var [x ], subject_var [x ], session_F [x ], self ._df1 , self ._df2 = ICC_rep_anova (Y )
50
+ icc [x ], subject_var [x ], session_var [x ], session_F [x ], self ._df1 , self ._df2 = ICC_rep_anova (Y )
51
51
52
52
nim = nb .load (self .inputs .subjects_sessions [0 ][0 ])
53
53
new_data = np .zeros (nim .get_shape ())
@@ -79,7 +79,7 @@ def _list_outputs(self):
79
79
outputs ['sessions_df_1' ] = self ._df1
80
80
outputs ['sessions_df_2' ] = self ._df2
81
81
outputs ['session_var_map' ] = os .path .abspath ('session_var_map.nii' )
82
- outputs ['session_var_map ' ] = os .path .abspath ('session_var_map .nii' )
82
+ outputs ['subject_var_map ' ] = os .path .abspath ('subject_var_map .nii' )
83
83
return outputs
84
84
85
85
0 commit comments