Skip to content

Commit 8b80d68

Browse files
committed
embedding : avoid common_batch
ggml-ci
1 parent 6f54ee6 commit 8b80d68

File tree

2 files changed

+32
-35
lines changed

2 files changed

+32
-35
lines changed

examples/embedding/embedding.cpp

Lines changed: 31 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -26,56 +26,52 @@ static std::vector<std::string> split_lines(const std::string & s, const std::st
2626
return lines;
2727
}
2828

29-
static void batch_add_seq(common_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
29+
static void batch_add_seq(llama_batch_ext * batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
3030
size_t n_tokens = tokens.size();
3131
for (size_t i = 0; i < n_tokens; i++) {
32-
batch.add_text(tokens[i], i, seq_id, true);
32+
llama_batch_ext_add_text(batch, tokens[i], i, &seq_id, 1, true);
3333
}
3434
}
3535

36-
static void batch_decode(llama_context * ctx, common_batch & batch, float * output, int n_seq, int n_embd, int embd_norm) {
36+
static void batch_decode(llama_context * ctx, llama_batch_ext * batch, float * output, int n_seq, int n_embd, int embd_norm) {
3737
const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
38-
const struct llama_model * model = llama_get_model(ctx);
38+
const llama_model * model = llama_get_model(ctx);
3939

4040
// clear previous kv_cache values (irrelevant for embeddings)
4141
llama_kv_self_clear(ctx);
4242

43+
const int n_tokens = llama_batch_ext_get_n_tokens(batch);
44+
4345
// run model
44-
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, llama_batch_ext_get_n_tokens(batch.get()), n_seq);
46+
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, n_tokens, n_seq);
4547
if (llama_model_has_encoder(model) && !llama_model_has_decoder(model)) {
4648
// encoder-only model
47-
if (llama_encode_ext(ctx, batch.get()) < 0) {
49+
if (llama_encode_ext(ctx, batch) < 0) {
4850
LOG_ERR("%s : failed to encode\n", __func__);
4951
}
5052
} else if (!llama_model_has_encoder(model) && llama_model_has_decoder(model)) {
5153
// decoder-only model
52-
if (llama_decode_ext(ctx, batch.get()) < 0) {
54+
if (llama_decode_ext(ctx, batch) < 0) {
5355
LOG_ERR("%s : failed to decode\n", __func__);
5456
}
5557
}
5658

57-
for (int i = 0; i < llama_batch_ext_get_n_tokens(batch.get()); i++) {
58-
if (!batch.tokens[i].logits) {
59-
continue;
60-
}
61-
62-
const float * embd = nullptr;
63-
int embd_pos = 0;
64-
65-
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
66-
// try to get token embeddings
67-
embd = llama_get_embeddings_ith(ctx, i);
68-
embd_pos = i;
59+
if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
60+
for (int i = 0; i < n_tokens; i++) {
61+
const float * embd = llama_get_embeddings_ith(ctx, i);
6962
GGML_ASSERT(embd != NULL && "failed to get token embeddings");
70-
} else {
71-
// try to get sequence embeddings - supported only when pooling_type is not NONE
72-
embd = llama_get_embeddings_seq(ctx, batch.tokens[i].seq_id);
73-
embd_pos = batch.tokens[i].seq_id;
74-
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
63+
64+
float * out = output + i * n_embd;
65+
common_embd_normalize(embd, out, n_embd, embd_norm);
7566
}
67+
} else {
68+
for (int s = 0; s < n_seq; s++) {
69+
const float * embd = llama_get_embeddings_seq(ctx, s);
70+
GGML_ASSERT(embd != NULL && "failed to get sequence embeddings");
7671

77-
float * out = output + embd_pos * n_embd;
78-
common_embd_normalize(embd, out, n_embd, embd_norm);
72+
float * out = output + s * n_embd;
73+
common_embd_normalize(embd, out, n_embd, embd_norm);
74+
}
7975
}
8076
}
8177

@@ -171,7 +167,7 @@ int main(int argc, char ** argv) {
171167

172168
// initialize batch
173169
const int n_prompts = prompts.size();
174-
struct common_batch batch = common_batch(n_batch, 1);
170+
llama_batch_ext * batch = llama_batch_ext_init(n_batch, 1);
175171

176172
// count number of embeddings
177173
int n_embd_count = 0;
@@ -198,12 +194,12 @@ int main(int argc, char ** argv) {
198194
const uint64_t n_toks = inp.size();
199195

200196
// encode if at capacity
201-
if (batch.get_n_tokens() + n_toks > n_batch) {
202-
float * out = emb + e * n_embd;
203-
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
204-
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.get_n_tokens() : s;
197+
if (llama_batch_ext_get_n_tokens(batch) + n_toks > n_batch) {
198+
batch_decode(ctx, batch, emb + e * n_embd, s, n_embd, params.embd_normalize);
199+
llama_batch_ext_clear(batch);
200+
201+
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? llama_batch_ext_get_n_tokens(batch) : s;
205202
s = 0;
206-
batch.clear();
207203
}
208204

209205
// add to batch
@@ -212,8 +208,7 @@ int main(int argc, char ** argv) {
212208
}
213209

214210
// final batch
215-
float * out = emb + e * n_embd;
216-
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
211+
batch_decode(ctx, batch, emb + e * n_embd, s, n_embd, params.embd_normalize);
217212

218213
if (params.embd_out.empty()) {
219214
LOG("\n");
@@ -318,6 +313,8 @@ int main(int argc, char ** argv) {
318313
LOG("\n");
319314
llama_perf_context_print(ctx);
320315

316+
llama_batch_ext_free(batch);
317+
321318
// clean up
322319
llama_backend_free();
323320

examples/retrieval/retrieval.cpp

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -82,7 +82,7 @@ static void batch_add_seq(llama_batch_ext * batch, const std::vector<int32_t> &
8282
}
8383

8484
static void batch_decode(llama_context * ctx, llama_batch_ext * batch, float * output, int n_seq, int n_embd, int embd_norm = 2) {
85-
const struct llama_model * model = llama_get_model(ctx);
85+
const llama_model * model = llama_get_model(ctx);
8686

8787
// clear previous kv_cache values (irrelevant for embeddings)
8888
llama_kv_self_clear(ctx);

0 commit comments

Comments
 (0)