diff --git a/backtesting/_stats.py b/backtesting/_stats.py index 8435605c..d4f0bdec 100644 --- a/backtesting/_stats.py +++ b/backtesting/_stats.py @@ -117,11 +117,11 @@ def _round_timedelta(value, _period=_data_period(index)): # Our Sharpe mismatches `empyrical.sharpe_ratio()` because they use arithmetic mean return # and simple standard deviation - s.loc['Sharpe Ratio'] = np.clip((s.loc['Return (Ann.) [%]'] - risk_free_rate) / (s.loc['Volatility (Ann.) [%]'] or np.nan), 0, np.inf) # noqa: E501 + s.loc['Sharpe Ratio'] = s.loc['Return (Ann.) [%]'] - risk_free_rate) / (s.loc['Volatility (Ann.) [%]'] or np.nan # noqa: E501 # Our Sortino mismatches `empyrical.sortino_ratio()` because they use arithmetic mean return - s.loc['Sortino Ratio'] = np.clip((annualized_return - risk_free_rate) / (np.sqrt(np.mean(day_returns.clip(-np.inf, 0)**2)) * np.sqrt(annual_trading_days)), 0, np.inf) # noqa: E501 + s.loc['Sortino Ratio'] = annualized_return - risk_free_rate) / (np.sqrt(np.mean(day_returns.clip(-np.inf, 0)**2)) * np.sqrt(annual_trading_days) # noqa: E501 max_dd = -np.nan_to_num(dd.max()) - s.loc['Calmar Ratio'] = np.clip(annualized_return / (-max_dd or np.nan), 0, np.inf) + s.loc['Calmar Ratio'] = annualized_return / (-max_dd or np.nan) s.loc['Max. Drawdown [%]'] = max_dd * 100 s.loc['Avg. Drawdown [%]'] = -dd_peaks.mean() * 100 s.loc['Max. Drawdown Duration'] = _round_timedelta(dd_dur.max())