|
| 1 | +import struct |
| 2 | +import torch |
| 3 | +import numpy as np |
| 4 | +from collections import OrderedDict |
| 5 | +from pathlib import Path |
| 6 | +import sys |
| 7 | + |
| 8 | +if len(sys.argv) < 3: |
| 9 | + print( |
| 10 | + "Usage: convert-ggml-to-pt.py model.bin dir-output\n") |
| 11 | + sys.exit(1) |
| 12 | + |
| 13 | +fname_inp = Path(sys.argv[1]) |
| 14 | +dir_out = Path(sys.argv[2]) |
| 15 | +fname_out = dir_out / "torch-model.pt" |
| 16 | + |
| 17 | + |
| 18 | + |
| 19 | +# Open the ggml file |
| 20 | +with open(fname_inp, "rb") as f: |
| 21 | + # Read magic number and hyperparameters |
| 22 | + magic_number, n_vocab, n_audio_ctx, n_audio_state, n_audio_head, n_audio_layer, n_text_ctx, n_text_state, n_text_head, n_text_layer, n_mels, use_f16 = struct.unpack("12i", f.read(48)) |
| 23 | + print(f"Magic number: {magic_number}") |
| 24 | + print(f"Vocab size: {n_vocab}") |
| 25 | + print(f"Audio context size: {n_audio_ctx}") |
| 26 | + print(f"Audio state size: {n_audio_state}") |
| 27 | + print(f"Audio head size: {n_audio_head}") |
| 28 | + print(f"Audio layer size: {n_audio_layer}") |
| 29 | + print(f"Text context size: {n_text_ctx}") |
| 30 | + print(f"Text head size: {n_text_head}") |
| 31 | + print(f"Mel size: {n_mels}") |
| 32 | + # Read mel filters |
| 33 | + # mel_filters = np.fromfile(f, dtype=np.float32, count=n_mels * 2).reshape(n_mels, 2) |
| 34 | + # print(f"Mel filters: {mel_filters}") |
| 35 | + filters_shape_0 = struct.unpack("i", f.read(4))[0] |
| 36 | + print(f"Filters shape 0: {filters_shape_0}") |
| 37 | + filters_shape_1 = struct.unpack("i", f.read(4))[0] |
| 38 | + print(f"Filters shape 1: {filters_shape_1}") |
| 39 | + |
| 40 | + # Read tokenizer tokens |
| 41 | + # bytes = f.read(4) |
| 42 | + # print(bytes) |
| 43 | + |
| 44 | + |
| 45 | + # for i in range(filters.shape[0]): |
| 46 | + # for j in range(filters.shape[1]): |
| 47 | + # fout.write(struct.pack("f", filters[i][j])) |
| 48 | + mel_filters = np.zeros((filters_shape_0, filters_shape_1)) |
| 49 | + |
| 50 | + for i in range(filters_shape_0): |
| 51 | + for j in range(filters_shape_1): |
| 52 | + mel_filters[i][j] = struct.unpack("f", f.read(4))[0] |
| 53 | + |
| 54 | + bytes_data = f.read(4) |
| 55 | + num_tokens = struct.unpack("i", bytes_data)[0] |
| 56 | + tokens = {} |
| 57 | + |
| 58 | + |
| 59 | + for _ in range(num_tokens): |
| 60 | + token_len = struct.unpack("i", f.read(4))[0] |
| 61 | + token = f.read(token_len) |
| 62 | + tokens[token] = {} |
| 63 | + |
| 64 | + # Read model variables |
| 65 | + model_state_dict = OrderedDict() |
| 66 | + while True: |
| 67 | + try: |
| 68 | + n_dims, name_length, ftype = struct.unpack("iii", f.read(12)) |
| 69 | + except struct.error: |
| 70 | + break # End of file |
| 71 | + dims = [struct.unpack("i", f.read(4))[0] for _ in range(n_dims)] |
| 72 | + dims = dims[::-1] |
| 73 | + name = f.read(name_length).decode("utf-8") |
| 74 | + if ftype == 1: # f16 |
| 75 | + data = np.fromfile(f, dtype=np.float16, count=np.prod(dims)).reshape(dims) |
| 76 | + else: # f32 |
| 77 | + data = np.fromfile(f, dtype=np.float32, count=np.prod(dims)).reshape(dims) |
| 78 | + |
| 79 | + |
| 80 | + if name in ["encoder.conv1.bias", "encoder.conv2.bias"]: |
| 81 | + |
| 82 | + data = data[:, 0] |
| 83 | + |
| 84 | + |
| 85 | + model_state_dict[name] = torch.from_numpy(data) |
| 86 | + |
| 87 | +# Now you have the model's state_dict stored in model_state_dict |
| 88 | +# You can load this state_dict into a model with the same architecture |
| 89 | + |
| 90 | +# dims = ModelDimensions(**checkpoint["dims"]) |
| 91 | +# model = Whisper(dims) |
| 92 | +from whisper import Whisper, ModelDimensions |
| 93 | +dims = ModelDimensions( |
| 94 | + n_mels=n_mels, |
| 95 | + n_audio_ctx=n_audio_ctx, |
| 96 | + n_audio_state=n_audio_state, |
| 97 | + n_audio_head=n_audio_head, |
| 98 | + n_audio_layer=n_audio_layer, |
| 99 | + n_text_ctx=n_text_ctx, |
| 100 | + n_text_state=n_text_state, |
| 101 | + n_text_head=n_text_head, |
| 102 | + n_text_layer=n_text_layer, |
| 103 | + n_vocab=n_vocab, |
| 104 | +) |
| 105 | +model = Whisper(dims) # Replace with your model's class |
| 106 | +model.load_state_dict(model_state_dict) |
| 107 | + |
| 108 | +# Save the model in PyTorch format |
| 109 | +torch.save(model.state_dict(), fname_out) |
0 commit comments