|
| 1 | +import torch |
| 2 | +import time |
| 3 | +import intel_pytorch_extension_py as ipex |
| 4 | +K=1 #128 |
| 5 | +C=16 #64 |
| 6 | +MB = 28 |
| 7 | + |
| 8 | +class Cast(torch.nn.Module): |
| 9 | + __constants__ = ['to_dtype'] |
| 10 | + |
| 11 | + def __init__(self, to_dtype): |
| 12 | + super(Cast, self).__init__() |
| 13 | + self.to_dtype = to_dtype |
| 14 | + |
| 15 | + def forward(self, input): |
| 16 | + return input.to(self.to_dtype) |
| 17 | + |
| 18 | + def extra_repr(self): |
| 19 | + return 'to(%s)' % self.to_dtype |
| 20 | + |
| 21 | +def get_rand_seed(): |
| 22 | + return int(time.time() * 1000000000) |
| 23 | + |
| 24 | +def _ipxex_linear_relu(random_seed, data_type = torch.float32): |
| 25 | + torch.manual_seed(random_seed) |
| 26 | + fc = ipex.LinearFuseRelu(C, K).to(data_type).to('dpcpp') |
| 27 | + return fc |
| 28 | + |
| 29 | +def _cpu_linear_relu(random_seed, data_type = torch.float32): |
| 30 | + torch.manual_seed(random_seed) |
| 31 | + fc = torch.nn.ModuleList() |
| 32 | + fc.append(torch.nn.Linear(C, K).to(data_type)) |
| 33 | + if data_type == torch.bfloat16: |
| 34 | + fc.append(Cast(torch.float32)) |
| 35 | + fc.append(torch.nn.ReLU()) |
| 36 | + return torch.nn.Sequential(*fc) |
| 37 | + |
| 38 | +def _run_mlp(random_seed, fc_module, data_type = torch.float32, device='cpu'): |
| 39 | + torch.manual_seed(random_seed) |
| 40 | + x1 = torch.randn(MB, C).to(data_type).to(device).requires_grad_() |
| 41 | + y1 = fc_module(x1) |
| 42 | + z1 = y1.mean() |
| 43 | + z1.backward() |
| 44 | + if type(fc_module) == torch.nn.modules.container.Sequential: |
| 45 | + return x1.grad, fc_module[0].weight.grad, fc_module[0].bias.grad |
| 46 | + return x1.grad, fc_module.weight.grad, fc_module.bias.grad |
| 47 | + |
| 48 | +for data_type in [torch.float32, torch.bfloat16]: |
| 49 | + seed = get_rand_seed() |
| 50 | + ipex_fc = _ipxex_linear_relu(seed, data_type) |
| 51 | + cpu_fc = _cpu_linear_relu(seed, data_type) |
| 52 | + |
| 53 | + rtol = 1e-5 |
| 54 | + atol = rtol |
| 55 | + if data_type == torch.bfloat16: |
| 56 | + rtol = 1e-2 |
| 57 | + atol = rtol |
| 58 | + |
| 59 | + seed = get_rand_seed() |
| 60 | + input_grad_ipex, weight_grad_ipex, bias_grad_ipex = _run_mlp(seed, ipex_fc, data_type, device='dpcpp') |
| 61 | + input_grad_cpu, weight_grad_cpu, bias_grad_cpu = _run_mlp(seed, cpu_fc, data_type) |
| 62 | + |
| 63 | + if input_grad_ipex is None: |
| 64 | + if input_grad_cpu is not None: |
| 65 | + print("##################### {} linear fuse relu input grad FAIL".format(str(data_type))) |
| 66 | + else: |
| 67 | + print("##################### {} linear fuse relu input grad PASS".format(str(data_type))) |
| 68 | + else: |
| 69 | + if not input_grad_ipex.to(torch.float32).allclose(input_grad_cpu.to(torch.float32), rtol=rtol, atol=atol): |
| 70 | + print("##################### {} linear fuse relu input grad FAIL".format(str(data_type))) |
| 71 | + else: |
| 72 | + print("##################### {} linear fuse relu input grad PASS".format(str(data_type))) |
| 73 | + |
| 74 | + if not weight_grad_ipex.to(torch.float32).allclose(weight_grad_cpu.to(torch.float32), rtol=rtol, atol=atol): |
| 75 | + print("##################### {} linear fuse relu weight grad FAIL".format(str(data_type))) |
| 76 | + else: |
| 77 | + print("##################### {} linear fuse relu weight grad PASS".format(str(data_type))) |
| 78 | + |
| 79 | + if not bias_grad_ipex.to(torch.float32).allclose(bias_grad_cpu.to(torch.float32), rtol=rtol, atol=atol): |
| 80 | + print("##################### {} linear fuse relu bias grad FAIL".format(str(data_type))) |
| 81 | + else: |
| 82 | + print("##################### {} linear fuse relu bias grad PASS".format(str(data_type))) |
0 commit comments