|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 2, |
| 6 | + "id": "ecdbd317", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import torch as tch\n", |
| 11 | + "import torchvision.datasets as dt\n", |
| 12 | + "import torchvision.transforms as trans\n", |
| 13 | + "import torch.nn as nn\n", |
| 14 | + "import matplotlib.pyplot as plt\n", |
| 15 | + "from time import time" |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "code", |
| 20 | + "execution_count": 3, |
| 21 | + "id": "6c333d1a", |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [ |
| 24 | + { |
| 25 | + "name": "stdout", |
| 26 | + "output_type": "stream", |
| 27 | + "text": [ |
| 28 | + "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", |
| 29 | + "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./datasets\\MNIST\\raw\\train-images-idx3-ubyte.gz\n" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "data": { |
| 34 | + "application/vnd.jupyter.widget-view+json": { |
| 35 | + "model_id": "01e4f3f628994928bfa4a950fe0a3e33", |
| 36 | + "version_major": 2, |
| 37 | + "version_minor": 0 |
| 38 | + }, |
| 39 | + "text/plain": [ |
| 40 | + " 0%| | 0/9912422 [00:00<?, ?it/s]" |
| 41 | + ] |
| 42 | + }, |
| 43 | + "metadata": {}, |
| 44 | + "output_type": "display_data" |
| 45 | + }, |
| 46 | + { |
| 47 | + "name": "stdout", |
| 48 | + "output_type": "stream", |
| 49 | + "text": [ |
| 50 | + "Extracting ./datasets\\MNIST\\raw\\train-images-idx3-ubyte.gz to ./datasets\\MNIST\\raw\n", |
| 51 | + "\n", |
| 52 | + "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n", |
| 53 | + "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./datasets\\MNIST\\raw\\train-labels-idx1-ubyte.gz\n" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "data": { |
| 58 | + "application/vnd.jupyter.widget-view+json": { |
| 59 | + "model_id": "1de9e88ce1c94b34b1cc1c8b5b9c70a8", |
| 60 | + "version_major": 2, |
| 61 | + "version_minor": 0 |
| 62 | + }, |
| 63 | + "text/plain": [ |
| 64 | + " 0%| | 0/28881 [00:00<?, ?it/s]" |
| 65 | + ] |
| 66 | + }, |
| 67 | + "metadata": {}, |
| 68 | + "output_type": "display_data" |
| 69 | + }, |
| 70 | + { |
| 71 | + "name": "stdout", |
| 72 | + "output_type": "stream", |
| 73 | + "text": [ |
| 74 | + "Extracting ./datasets\\MNIST\\raw\\train-labels-idx1-ubyte.gz to ./datasets\\MNIST\\raw\n", |
| 75 | + "\n", |
| 76 | + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n", |
| 77 | + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./datasets\\MNIST\\raw\\t10k-images-idx3-ubyte.gz\n" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "data": { |
| 82 | + "application/vnd.jupyter.widget-view+json": { |
| 83 | + "model_id": "ebf88e8850e7413fad33668a8d0bf344", |
| 84 | + "version_major": 2, |
| 85 | + "version_minor": 0 |
| 86 | + }, |
| 87 | + "text/plain": [ |
| 88 | + " 0%| | 0/1648877 [00:00<?, ?it/s]" |
| 89 | + ] |
| 90 | + }, |
| 91 | + "metadata": {}, |
| 92 | + "output_type": "display_data" |
| 93 | + }, |
| 94 | + { |
| 95 | + "name": "stdout", |
| 96 | + "output_type": "stream", |
| 97 | + "text": [ |
| 98 | + "Extracting ./datasets\\MNIST\\raw\\t10k-images-idx3-ubyte.gz to ./datasets\\MNIST\\raw\n", |
| 99 | + "\n", |
| 100 | + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n", |
| 101 | + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./datasets\\MNIST\\raw\\t10k-labels-idx1-ubyte.gz\n" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "data": { |
| 106 | + "application/vnd.jupyter.widget-view+json": { |
| 107 | + "model_id": "2693df027cae4fd3981044ca79135e89", |
| 108 | + "version_major": 2, |
| 109 | + "version_minor": 0 |
| 110 | + }, |
| 111 | + "text/plain": [ |
| 112 | + " 0%| | 0/4542 [00:00<?, ?it/s]" |
| 113 | + ] |
| 114 | + }, |
| 115 | + "metadata": {}, |
| 116 | + "output_type": "display_data" |
| 117 | + }, |
| 118 | + { |
| 119 | + "name": "stdout", |
| 120 | + "output_type": "stream", |
| 121 | + "text": [ |
| 122 | + "Extracting ./datasets\\MNIST\\raw\\t10k-labels-idx1-ubyte.gz to ./datasets\\MNIST\\raw\n", |
| 123 | + "\n", |
| 124 | + "No. of Training examples: 60000\n", |
| 125 | + "No. of Test examples: 10000\n" |
| 126 | + ] |
| 127 | + } |
| 128 | + ], |
| 129 | + "source": [ |
| 130 | + "train = dt.MNIST(root=\"./datasets\", train=True, transform=trans.ToTensor(), download=True)\n", |
| 131 | + "test = dt.MNIST(root=\"./datasets\", train=False, transform=trans.ToTensor(), download=True)\n", |
| 132 | + "print(\"No. of Training examples: \",len(train))\n", |
| 133 | + "print(\"No. of Test examples: \",len(test))" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "code", |
| 138 | + "execution_count": 4, |
| 139 | + "id": "afa4ff12", |
| 140 | + "metadata": {}, |
| 141 | + "outputs": [], |
| 142 | + "source": [ |
| 143 | + "train_batch = tch.utils.data.DataLoader(train, batch_size=30, shuffle=True)" |
| 144 | + ] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "code", |
| 148 | + "execution_count": 5, |
| 149 | + "id": "022d262f", |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [], |
| 152 | + "source": [ |
| 153 | + "input = 784\n", |
| 154 | + "hidden = 490\n", |
| 155 | + "output = 10" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "code", |
| 160 | + "execution_count": 6, |
| 161 | + "id": "ea590922", |
| 162 | + "metadata": {}, |
| 163 | + "outputs": [], |
| 164 | + "source": [ |
| 165 | + "model = nn.Sequential(nn.Linear(input, hidden),\n", |
| 166 | + " nn.LeakyReLU(),\n", |
| 167 | + " nn.Linear(hidden, output),\n", |
| 168 | + " nn.LogSoftmax(dim=1))" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": 7, |
| 174 | + "id": "fa9a5b1f", |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "lossfn = nn.NLLLoss()\n", |
| 179 | + "images, labels = next(iter(train_batch))\n", |
| 180 | + "images = images.view(images.shape[0], -1)\n", |
| 181 | + "\n", |
| 182 | + "logps = model(images)\n", |
| 183 | + "loss = lossfn(logps, labels)\n", |
| 184 | + "loss.backward()" |
| 185 | + ] |
| 186 | + }, |
| 187 | + { |
| 188 | + "cell_type": "code", |
| 189 | + "execution_count": 8, |
| 190 | + "id": "e1fb5d19", |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [ |
| 193 | + { |
| 194 | + "name": "stdout", |
| 195 | + "output_type": "stream", |
| 196 | + "text": [ |
| 197 | + "Epoch Number : 0 = Loss : 0.5149400651156902\n", |
| 198 | + "Epoch Number : 1 = Loss : 0.261456840605475\n", |
| 199 | + "Epoch Number : 2 = Loss : 0.20588867816049605\n", |
| 200 | + "Epoch Number : 3 = Loss : 0.16964873825758695\n", |
| 201 | + "Epoch Number : 4 = Loss : 0.1434834775705822\n", |
| 202 | + "Epoch Number : 5 = Loss : 0.12429279719106853\n", |
| 203 | + "Epoch Number : 6 = Loss : 0.10908355080941692\n", |
| 204 | + "Epoch Number : 7 = Loss : 0.09697999537643046\n", |
| 205 | + "Epoch Number : 8 = Loss : 0.08723836344201118\n", |
| 206 | + "Epoch Number : 9 = Loss : 0.07917423069826328\n", |
| 207 | + "Epoch Number : 10 = Loss : 0.07214489371958188\n", |
| 208 | + "Epoch Number : 11 = Loss : 0.06623679360805546\n", |
| 209 | + "Epoch Number : 12 = Loss : 0.060786034525139254\n", |
| 210 | + "Epoch Number : 13 = Loss : 0.05600704051565845\n", |
| 211 | + "Epoch Number : 14 = Loss : 0.05210975646332372\n", |
| 212 | + "Epoch Number : 15 = Loss : 0.04836869774857769\n", |
| 213 | + "Epoch Number : 16 = Loss : 0.045035426611895676\n", |
| 214 | + "Epoch Number : 17 = Loss : 0.04181636443955358\n", |
| 215 | + "\n", |
| 216 | + "Training Time (in minutes) : 3.022224660714467\n" |
| 217 | + ] |
| 218 | + } |
| 219 | + ], |
| 220 | + "source": [ |
| 221 | + "optimize = tch.optim.SGD(model.parameters(), lr=0.003, momentum=0.9)\n", |
| 222 | + "time_start = time()\n", |
| 223 | + "epochs = 18\n", |
| 224 | + "for num in range(epochs):\n", |
| 225 | + " run=0\n", |
| 226 | + " for images, labels in train_batch:\n", |
| 227 | + " images = images.view(images.shape[0], -1)\n", |
| 228 | + " optimize.zero_grad()\n", |
| 229 | + " output = model(images)\n", |
| 230 | + " loss = lossfn(output, labels)\n", |
| 231 | + " loss.backward()\n", |
| 232 | + " optimize.step()\n", |
| 233 | + " run += loss.item()\n", |
| 234 | + " else:\n", |
| 235 | + " print(\"Epoch Number : {} = Loss : {}\".format(num, run/len(train_batch)))\n", |
| 236 | + "Elapsed=(time()-time_start)/60\n", |
| 237 | + "print(\"\\nTraining Time (in minutes) : \",Elapsed)" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": 9, |
| 243 | + "id": "03c79aae", |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [ |
| 246 | + { |
| 247 | + "name": "stdout", |
| 248 | + "output_type": "stream", |
| 249 | + "text": [ |
| 250 | + "Number Of Images Tested : 10000\n", |
| 251 | + "Model Accuracy : 0.9777\n" |
| 252 | + ] |
| 253 | + } |
| 254 | + ], |
| 255 | + "source": [ |
| 256 | + "correct=0\n", |
| 257 | + "all = 0\n", |
| 258 | + "for images,labels in test:\n", |
| 259 | + " img = images.view(1, 784)\n", |
| 260 | + " with tch.no_grad():\n", |
| 261 | + " logps = model(img) \n", |
| 262 | + " ps = tch.exp(logps)\n", |
| 263 | + " probab = list(ps.numpy()[0])\n", |
| 264 | + " prediction = probab.index(max(probab))\n", |
| 265 | + " truth = labels\n", |
| 266 | + " if(truth == prediction):\n", |
| 267 | + " correct += 1\n", |
| 268 | + " all += 1\n", |
| 269 | + "\n", |
| 270 | + "print(\"Number Of Images Tested : \", all)\n", |
| 271 | + "print(\"Model Accuracy : \", (correct/all))" |
| 272 | + ] |
| 273 | + }, |
| 274 | + { |
| 275 | + "cell_type": "code", |
| 276 | + "execution_count": 10, |
| 277 | + "id": "3569476c", |
| 278 | + "metadata": {}, |
| 279 | + "outputs": [], |
| 280 | + "source": [ |
| 281 | + "tch.save(model, './mnist_model.pt')" |
| 282 | + ] |
| 283 | + } |
| 284 | + ], |
| 285 | + "metadata": { |
| 286 | + "kernelspec": { |
| 287 | + "display_name": "Python 3 (ipykernel)", |
| 288 | + "language": "python", |
| 289 | + "name": "python3" |
| 290 | + }, |
| 291 | + "language_info": { |
| 292 | + "codemirror_mode": { |
| 293 | + "name": "ipython", |
| 294 | + "version": 3 |
| 295 | + }, |
| 296 | + "file_extension": ".py", |
| 297 | + "mimetype": "text/x-python", |
| 298 | + "name": "python", |
| 299 | + "nbconvert_exporter": "python", |
| 300 | + "pygments_lexer": "ipython3", |
| 301 | + "version": "3.9.13" |
| 302 | + } |
| 303 | + }, |
| 304 | + "nbformat": 4, |
| 305 | + "nbformat_minor": 5 |
| 306 | +} |
0 commit comments