@@ -192,7 +192,7 @@ def interpolate(
192
192
list of weights for each condition in `images_and_prompts`
193
193
num_images_per_prompt (`int`, *optional*, defaults to 1):
194
194
The number of images to generate per prompt.
195
- num_inference_steps (`int`, *optional*, defaults to 100 ):
195
+ num_inference_steps (`int`, *optional*, defaults to 25 ):
196
196
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
197
197
expense of slower inference.
198
198
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
@@ -442,7 +442,7 @@ def __call__(
442
442
generator : Optional [Union [torch .Generator , List [torch .Generator ]]] = None ,
443
443
latents : Optional [torch .FloatTensor ] = None ,
444
444
guidance_scale : float = 4.0 ,
445
- output_type : Optional [str ] = "pt" , # pt only
445
+ output_type : Optional [str ] = "pt" ,
446
446
return_dict : bool = True ,
447
447
):
448
448
"""
@@ -456,7 +456,7 @@ def __call__(
456
456
if `guidance_scale` is less than `1`).
457
457
num_images_per_prompt (`int`, *optional*, defaults to 1):
458
458
The number of images to generate per prompt.
459
- num_inference_steps (`int`, *optional*, defaults to 100 ):
459
+ num_inference_steps (`int`, *optional*, defaults to 25 ):
460
460
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
461
461
expense of slower inference.
462
462
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
0 commit comments