Skip to content

Commit 9920c33

Browse files
authored
add OnnxStableDiffusionUpscalePipeline pipeline (#2158)
* [Onnx] add Stable Diffusion Upscale pipeline * add a test for the OnnxStableDiffusionUpscalePipeline * check for VAE config before adjusting scaling factor * update test assertions, lint fixes * run fix-copies target * switch test checkpoint to one hosted on huggingface * partially restore attention mask * reshape embeddings after running text encoder * add longer nightly test for ONNX upscale pipeline * use package import to fix tests * fix scheduler compatibility and class labels dtype * use more precise type * remove LMS from fast tests * lookup latent and timestamp types * add docs for ONNX upscaling, rename lookup table * replace deprecated pipeline names in ONNX docs
1 parent f38e362 commit 9920c33

File tree

8 files changed

+589
-17
lines changed

8 files changed

+589
-17
lines changed

docs/source/en/optimization/onnx.mdx

Lines changed: 34 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -21,13 +21,13 @@ specific language governing permissions and limitations under the License.
2121

2222
## Stable Diffusion Inference
2323

24-
The snippet below demonstrates how to use the ONNX runtime. You need to use `StableDiffusionOnnxPipeline` instead of `StableDiffusionPipeline`. You also need to download the weights from the `onnx` branch of the repository, and indicate the runtime provider you want to use.
24+
The snippet below demonstrates how to use the ONNX runtime. You need to use `OnnxStableDiffusionPipeline` instead of `StableDiffusionPipeline`. You also need to download the weights from the `onnx` branch of the repository, and indicate the runtime provider you want to use.
2525

2626
```python
2727
# make sure you're logged in with `huggingface-cli login`
28-
from diffusers import StableDiffusionOnnxPipeline
28+
from diffusers import OnnxStableDiffusionPipeline
2929

30-
pipe = StableDiffusionOnnxPipeline.from_pretrained(
30+
pipe = OnnxStableDiffusionPipeline.from_pretrained(
3131
"runwayml/stable-diffusion-v1-5",
3232
revision="onnx",
3333
provider="CUDAExecutionProvider",
@@ -37,6 +37,37 @@ prompt = "a photo of an astronaut riding a horse on mars"
3737
image = pipe(prompt).images[0]
3838
```
3939

40+
The snippet below demonstrates how to use the ONNX runtime with the Stable Diffusion upscaling pipeline.
41+
42+
```python
43+
from diffusers import OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline
44+
45+
prompt = "a photo of an astronaut riding a horse on mars"
46+
steps = 50
47+
48+
txt2img = OnnxStableDiffusionPipeline.from_pretrained(
49+
"runwayml/stable-diffusion-v1-5",
50+
revision="onnx",
51+
provider="CUDAExecutionProvider",
52+
)
53+
small_image = txt2img(
54+
prompt,
55+
num_inference_steps=steps,
56+
).images[0]
57+
58+
generator = torch.manual_seed(0)
59+
upscale = OnnxStableDiffusionUpscalePipeline.from_pretrained(
60+
"ssube/stable-diffusion-x4-upscaler-onnx",
61+
provider="CUDAExecutionProvider",
62+
)
63+
large_image = upscale(
64+
prompt,
65+
small_image,
66+
generator=generator,
67+
num_inference_steps=steps,
68+
).images[0]
69+
```
70+
4071
## Known Issues
4172

4273
- Generating multiple prompts in a batch seems to take too much memory. While we look into it, you may need to iterate instead of batching.

src/diffusers/__init__.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -158,6 +158,7 @@
158158
OnnxStableDiffusionInpaintPipeline,
159159
OnnxStableDiffusionInpaintPipelineLegacy,
160160
OnnxStableDiffusionPipeline,
161+
OnnxStableDiffusionUpscalePipeline,
161162
StableDiffusionOnnxPipeline,
162163
)
163164

src/diffusers/pipelines/__init__.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -93,6 +93,7 @@
9393
OnnxStableDiffusionInpaintPipeline,
9494
OnnxStableDiffusionInpaintPipelineLegacy,
9595
OnnxStableDiffusionPipeline,
96+
OnnxStableDiffusionUpscalePipeline,
9697
StableDiffusionOnnxPipeline,
9798
)
9899

src/diffusers/pipelines/stable_diffusion/__init__.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -104,6 +104,7 @@ class StableDiffusionPipelineOutput(BaseOutput):
104104
from .pipeline_onnx_stable_diffusion_img2img import OnnxStableDiffusionImg2ImgPipeline
105105
from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline
106106
from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy
107+
from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline
107108

108109
if is_transformers_available() and is_flax_available():
109110
import flax
Lines changed: 290 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,290 @@
1+
from logging import getLogger
2+
from typing import Any, Callable, List, Optional, Union
3+
4+
import numpy as np
5+
import PIL
6+
import torch
7+
8+
from ...schedulers import DDPMScheduler
9+
from ..onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel
10+
from ..pipeline_utils import ImagePipelineOutput
11+
from . import StableDiffusionUpscalePipeline
12+
13+
14+
logger = getLogger(__name__)
15+
16+
17+
NUM_LATENT_CHANNELS = 4
18+
NUM_UNET_INPUT_CHANNELS = 7
19+
20+
ORT_TO_PT_TYPE = {
21+
"float16": torch.float16,
22+
"float32": torch.float32,
23+
}
24+
25+
26+
def preprocess(image):
27+
if isinstance(image, torch.Tensor):
28+
return image
29+
elif isinstance(image, PIL.Image.Image):
30+
image = [image]
31+
32+
if isinstance(image[0], PIL.Image.Image):
33+
w, h = image[0].size
34+
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32
35+
36+
image = [np.array(i.resize((w, h)))[None, :] for i in image]
37+
image = np.concatenate(image, axis=0)
38+
image = np.array(image).astype(np.float32) / 255.0
39+
image = image.transpose(0, 3, 1, 2)
40+
image = 2.0 * image - 1.0
41+
image = torch.from_numpy(image)
42+
elif isinstance(image[0], torch.Tensor):
43+
image = torch.cat(image, dim=0)
44+
45+
return image
46+
47+
48+
class OnnxStableDiffusionUpscalePipeline(StableDiffusionUpscalePipeline):
49+
def __init__(
50+
self,
51+
vae: OnnxRuntimeModel,
52+
text_encoder: OnnxRuntimeModel,
53+
tokenizer: Any,
54+
unet: OnnxRuntimeModel,
55+
low_res_scheduler: DDPMScheduler,
56+
scheduler: Any,
57+
max_noise_level: int = 350,
58+
):
59+
super().__init__(vae, text_encoder, tokenizer, unet, low_res_scheduler, scheduler, max_noise_level)
60+
61+
def __call__(
62+
self,
63+
prompt: Union[str, List[str]],
64+
image: Union[torch.FloatTensor, PIL.Image.Image, List[PIL.Image.Image]],
65+
num_inference_steps: int = 75,
66+
guidance_scale: float = 9.0,
67+
noise_level: int = 20,
68+
negative_prompt: Optional[Union[str, List[str]]] = None,
69+
num_images_per_prompt: Optional[int] = 1,
70+
eta: float = 0.0,
71+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
72+
latents: Optional[torch.FloatTensor] = None,
73+
output_type: Optional[str] = "pil",
74+
return_dict: bool = True,
75+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
76+
callback_steps: Optional[int] = 1,
77+
):
78+
# 1. Check inputs
79+
self.check_inputs(prompt, image, noise_level, callback_steps)
80+
81+
# 2. Define call parameters
82+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
83+
device = self._execution_device
84+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
85+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
86+
# corresponds to doing no classifier free guidance.
87+
do_classifier_free_guidance = guidance_scale > 1.0
88+
89+
# 3. Encode input prompt
90+
text_embeddings = self._encode_prompt(
91+
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
92+
)
93+
94+
latents_dtype = ORT_TO_PT_TYPE[str(text_embeddings.dtype)]
95+
96+
# 4. Preprocess image
97+
image = preprocess(image)
98+
image = image.cpu()
99+
100+
# 5. set timesteps
101+
self.scheduler.set_timesteps(num_inference_steps, device=device)
102+
timesteps = self.scheduler.timesteps
103+
104+
# 5. Add noise to image
105+
noise_level = torch.tensor([noise_level], dtype=torch.long, device=device)
106+
noise = torch.randn(image.shape, generator=generator, device=device, dtype=latents_dtype)
107+
image = self.low_res_scheduler.add_noise(image, noise, noise_level)
108+
109+
batch_multiplier = 2 if do_classifier_free_guidance else 1
110+
image = np.concatenate([image] * batch_multiplier * num_images_per_prompt)
111+
noise_level = np.concatenate([noise_level] * image.shape[0])
112+
113+
# 6. Prepare latent variables
114+
height, width = image.shape[2:]
115+
latents = self.prepare_latents(
116+
batch_size * num_images_per_prompt,
117+
NUM_LATENT_CHANNELS,
118+
height,
119+
width,
120+
latents_dtype,
121+
device,
122+
generator,
123+
latents,
124+
)
125+
126+
# 7. Check that sizes of image and latents match
127+
num_channels_image = image.shape[1]
128+
if NUM_LATENT_CHANNELS + num_channels_image != NUM_UNET_INPUT_CHANNELS:
129+
raise ValueError(
130+
"Incorrect configuration settings! The config of `pipeline.unet` expects"
131+
f" {NUM_UNET_INPUT_CHANNELS} but received `num_channels_latents`: {NUM_LATENT_CHANNELS} +"
132+
f" `num_channels_image`: {num_channels_image} "
133+
f" = {NUM_LATENT_CHANNELS+num_channels_image}. Please verify the config of"
134+
" `pipeline.unet` or your `image` input."
135+
)
136+
137+
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
138+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
139+
140+
timestep_dtype = next(
141+
(input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
142+
)
143+
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
144+
145+
# 9. Denoising loop
146+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
147+
with self.progress_bar(total=num_inference_steps) as progress_bar:
148+
for i, t in enumerate(timesteps):
149+
# expand the latents if we are doing classifier free guidance
150+
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
151+
152+
# concat latents, mask, masked_image_latents in the channel dimension
153+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
154+
latent_model_input = np.concatenate([latent_model_input, image], axis=1)
155+
156+
# timestep to tensor
157+
timestep = np.array([t], dtype=timestep_dtype)
158+
159+
# predict the noise residual
160+
noise_pred = self.unet(
161+
sample=latent_model_input,
162+
timestep=timestep,
163+
encoder_hidden_states=text_embeddings,
164+
class_labels=noise_level.astype(np.int64),
165+
)[0]
166+
167+
# perform guidance
168+
if do_classifier_free_guidance:
169+
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
170+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
171+
172+
# compute the previous noisy sample x_t -> x_t-1
173+
latents = self.scheduler.step(
174+
torch.from_numpy(noise_pred), t, latents, **extra_step_kwargs
175+
).prev_sample
176+
177+
# call the callback, if provided
178+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
179+
progress_bar.update()
180+
if callback is not None and i % callback_steps == 0:
181+
callback(i, t, latents)
182+
183+
# 10. Post-processing
184+
image = self.decode_latents(latents.float())
185+
186+
# 11. Convert to PIL
187+
if output_type == "pil":
188+
image = self.numpy_to_pil(image)
189+
190+
if not return_dict:
191+
return (image,)
192+
193+
return ImagePipelineOutput(images=image)
194+
195+
def decode_latents(self, latents):
196+
latents = 1 / 0.08333 * latents
197+
image = self.vae(latent_sample=latents)[0]
198+
image = np.clip(image / 2 + 0.5, 0, 1)
199+
image = image.transpose((0, 2, 3, 1))
200+
return image
201+
202+
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
203+
batch_size = len(prompt) if isinstance(prompt, list) else 1
204+
205+
text_inputs = self.tokenizer(
206+
prompt,
207+
padding="max_length",
208+
max_length=self.tokenizer.model_max_length,
209+
truncation=True,
210+
return_tensors="pt",
211+
)
212+
text_input_ids = text_inputs.input_ids
213+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
214+
215+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
216+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
217+
logger.warning(
218+
"The following part of your input was truncated because CLIP can only handle sequences up to"
219+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
220+
)
221+
222+
# if hasattr(text_inputs, "attention_mask"):
223+
# attention_mask = text_inputs.attention_mask.to(device)
224+
# else:
225+
# attention_mask = None
226+
227+
# no positional arguments to text_encoder
228+
text_embeddings = self.text_encoder(
229+
input_ids=text_input_ids.int().to(device),
230+
# attention_mask=attention_mask,
231+
)
232+
text_embeddings = text_embeddings[0]
233+
234+
bs_embed, seq_len, _ = text_embeddings.shape
235+
# duplicate text embeddings for each generation per prompt, using mps friendly method
236+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt)
237+
text_embeddings = text_embeddings.reshape(bs_embed * num_images_per_prompt, seq_len, -1)
238+
239+
# get unconditional embeddings for classifier free guidance
240+
if do_classifier_free_guidance:
241+
uncond_tokens: List[str]
242+
if negative_prompt is None:
243+
uncond_tokens = [""] * batch_size
244+
elif type(prompt) is not type(negative_prompt):
245+
raise TypeError(
246+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
247+
f" {type(prompt)}."
248+
)
249+
elif isinstance(negative_prompt, str):
250+
uncond_tokens = [negative_prompt]
251+
elif batch_size != len(negative_prompt):
252+
raise ValueError(
253+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
254+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
255+
" the batch size of `prompt`."
256+
)
257+
else:
258+
uncond_tokens = negative_prompt
259+
260+
max_length = text_input_ids.shape[-1]
261+
uncond_input = self.tokenizer(
262+
uncond_tokens,
263+
padding="max_length",
264+
max_length=max_length,
265+
truncation=True,
266+
return_tensors="pt",
267+
)
268+
269+
# if hasattr(uncond_input, "attention_mask"):
270+
# attention_mask = uncond_input.attention_mask.to(device)
271+
# else:
272+
# attention_mask = None
273+
274+
uncond_embeddings = self.text_encoder(
275+
input_ids=uncond_input.input_ids.int().to(device),
276+
# attention_mask=attention_mask,
277+
)
278+
uncond_embeddings = uncond_embeddings[0]
279+
280+
seq_len = uncond_embeddings.shape[1]
281+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
282+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt)
283+
uncond_embeddings = uncond_embeddings.reshape(batch_size * num_images_per_prompt, seq_len, -1)
284+
285+
# For classifier free guidance, we need to do two forward passes.
286+
# Here we concatenate the unconditional and text embeddings into a single batch
287+
# to avoid doing two forward passes
288+
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
289+
290+
return text_embeddings

0 commit comments

Comments
 (0)