@@ -697,17 +697,22 @@ def collate_fn(examples):
697
697
)
698
698
699
699
# Scheduler and math around the number of training steps.
700
- overrode_max_train_steps = False
701
- num_update_steps_per_epoch = math . ceil ( len ( train_dataloader ) / args . gradient_accumulation_steps )
700
+ # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
701
+ num_warmup_steps_for_scheduler = args . lr_warmup_steps * accelerator . num_processes
702
702
if args .max_train_steps is None :
703
- args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
704
- overrode_max_train_steps = True
703
+ len_train_dataloader_after_sharding = math .ceil (len (train_dataloader ) / accelerator .num_processes )
704
+ num_update_steps_per_epoch = math .ceil (len_train_dataloader_after_sharding / args .gradient_accumulation_steps )
705
+ num_training_steps_for_scheduler = (
706
+ args .num_train_epochs * num_update_steps_per_epoch * accelerator .num_processes
707
+ )
708
+ else :
709
+ num_training_steps_for_scheduler = args .max_train_steps * accelerator .num_processes
705
710
706
711
lr_scheduler = get_scheduler (
707
712
args .lr_scheduler ,
708
713
optimizer = optimizer ,
709
- num_warmup_steps = args . lr_warmup_steps * accelerator . num_processes ,
710
- num_training_steps = args . max_train_steps * accelerator . num_processes ,
714
+ num_warmup_steps = num_warmup_steps_for_scheduler ,
715
+ num_training_steps = num_training_steps_for_scheduler ,
711
716
)
712
717
713
718
# Prepare everything with our `accelerator`.
@@ -717,8 +722,14 @@ def collate_fn(examples):
717
722
718
723
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
719
724
num_update_steps_per_epoch = math .ceil (len (train_dataloader ) / args .gradient_accumulation_steps )
720
- if overrode_max_train_steps :
725
+ if args . max_train_steps is None :
721
726
args .max_train_steps = args .num_train_epochs * num_update_steps_per_epoch
727
+ if num_training_steps_for_scheduler != args .max_train_steps * accelerator .num_processes :
728
+ logger .warning (
729
+ f"The length of the 'train_dataloader' after 'accelerator.prepare' ({ len (train_dataloader )} ) does not match "
730
+ f"the expected length ({ len_train_dataloader_after_sharding } ) when the learning rate scheduler was created. "
731
+ f"This inconsistency may result in the learning rate scheduler not functioning properly."
732
+ )
722
733
# Afterwards we recalculate our number of training epochs
723
734
args .num_train_epochs = math .ceil (args .max_train_steps / num_update_steps_per_epoch )
724
735
0 commit comments