Skip to content

Commit 8eefed6

Browse files
authored
[LoRA] CogView4 (#10981)
* update * make fix-copies * update
1 parent 26149c0 commit 8eefed6

File tree

6 files changed

+521
-9
lines changed

6 files changed

+521
-9
lines changed

src/diffusers/loaders/__init__.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -70,6 +70,7 @@ def text_encoder_attn_modules(text_encoder):
7070
"LoraLoaderMixin",
7171
"FluxLoraLoaderMixin",
7272
"CogVideoXLoraLoaderMixin",
73+
"CogView4LoraLoaderMixin",
7374
"Mochi1LoraLoaderMixin",
7475
"HunyuanVideoLoraLoaderMixin",
7576
"SanaLoraLoaderMixin",
@@ -103,6 +104,7 @@ def text_encoder_attn_modules(text_encoder):
103104
from .lora_pipeline import (
104105
AmusedLoraLoaderMixin,
105106
CogVideoXLoraLoaderMixin,
107+
CogView4LoraLoaderMixin,
106108
FluxLoraLoaderMixin,
107109
HunyuanVideoLoraLoaderMixin,
108110
LoraLoaderMixin,

src/diffusers/loaders/lora_pipeline.py

Lines changed: 305 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4406,6 +4406,311 @@ def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
44064406
super().unfuse_lora(components=components)
44074407

44084408

4409+
class CogView4LoraLoaderMixin(LoraBaseMixin):
4410+
r"""
4411+
Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`CogView4Pipeline`].
4412+
"""
4413+
4414+
_lora_loadable_modules = ["transformer"]
4415+
transformer_name = TRANSFORMER_NAME
4416+
4417+
@classmethod
4418+
@validate_hf_hub_args
4419+
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
4420+
def lora_state_dict(
4421+
cls,
4422+
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
4423+
**kwargs,
4424+
):
4425+
r"""
4426+
Return state dict for lora weights and the network alphas.
4427+
4428+
<Tip warning={true}>
4429+
4430+
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
4431+
4432+
This function is experimental and might change in the future.
4433+
4434+
</Tip>
4435+
4436+
Parameters:
4437+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
4438+
Can be either:
4439+
4440+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
4441+
the Hub.
4442+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
4443+
with [`ModelMixin.save_pretrained`].
4444+
- A [torch state
4445+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
4446+
4447+
cache_dir (`Union[str, os.PathLike]`, *optional*):
4448+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
4449+
is not used.
4450+
force_download (`bool`, *optional*, defaults to `False`):
4451+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
4452+
cached versions if they exist.
4453+
4454+
proxies (`Dict[str, str]`, *optional*):
4455+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
4456+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
4457+
local_files_only (`bool`, *optional*, defaults to `False`):
4458+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
4459+
won't be downloaded from the Hub.
4460+
token (`str` or *bool*, *optional*):
4461+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
4462+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
4463+
revision (`str`, *optional*, defaults to `"main"`):
4464+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
4465+
allowed by Git.
4466+
subfolder (`str`, *optional*, defaults to `""`):
4467+
The subfolder location of a model file within a larger model repository on the Hub or locally.
4468+
4469+
"""
4470+
# Load the main state dict first which has the LoRA layers for either of
4471+
# transformer and text encoder or both.
4472+
cache_dir = kwargs.pop("cache_dir", None)
4473+
force_download = kwargs.pop("force_download", False)
4474+
proxies = kwargs.pop("proxies", None)
4475+
local_files_only = kwargs.pop("local_files_only", None)
4476+
token = kwargs.pop("token", None)
4477+
revision = kwargs.pop("revision", None)
4478+
subfolder = kwargs.pop("subfolder", None)
4479+
weight_name = kwargs.pop("weight_name", None)
4480+
use_safetensors = kwargs.pop("use_safetensors", None)
4481+
4482+
allow_pickle = False
4483+
if use_safetensors is None:
4484+
use_safetensors = True
4485+
allow_pickle = True
4486+
4487+
user_agent = {
4488+
"file_type": "attn_procs_weights",
4489+
"framework": "pytorch",
4490+
}
4491+
4492+
state_dict = _fetch_state_dict(
4493+
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
4494+
weight_name=weight_name,
4495+
use_safetensors=use_safetensors,
4496+
local_files_only=local_files_only,
4497+
cache_dir=cache_dir,
4498+
force_download=force_download,
4499+
proxies=proxies,
4500+
token=token,
4501+
revision=revision,
4502+
subfolder=subfolder,
4503+
user_agent=user_agent,
4504+
allow_pickle=allow_pickle,
4505+
)
4506+
4507+
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
4508+
if is_dora_scale_present:
4509+
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
4510+
logger.warning(warn_msg)
4511+
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
4512+
4513+
return state_dict
4514+
4515+
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
4516+
def load_lora_weights(
4517+
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
4518+
):
4519+
"""
4520+
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
4521+
`self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
4522+
[`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
4523+
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
4524+
dict is loaded into `self.transformer`.
4525+
4526+
Parameters:
4527+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
4528+
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
4529+
adapter_name (`str`, *optional*):
4530+
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
4531+
`default_{i}` where i is the total number of adapters being loaded.
4532+
low_cpu_mem_usage (`bool`, *optional*):
4533+
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
4534+
weights.
4535+
kwargs (`dict`, *optional*):
4536+
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
4537+
"""
4538+
if not USE_PEFT_BACKEND:
4539+
raise ValueError("PEFT backend is required for this method.")
4540+
4541+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
4542+
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
4543+
raise ValueError(
4544+
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
4545+
)
4546+
4547+
# if a dict is passed, copy it instead of modifying it inplace
4548+
if isinstance(pretrained_model_name_or_path_or_dict, dict):
4549+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
4550+
4551+
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4552+
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
4553+
4554+
is_correct_format = all("lora" in key for key in state_dict.keys())
4555+
if not is_correct_format:
4556+
raise ValueError("Invalid LoRA checkpoint.")
4557+
4558+
self.load_lora_into_transformer(
4559+
state_dict,
4560+
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
4561+
adapter_name=adapter_name,
4562+
_pipeline=self,
4563+
low_cpu_mem_usage=low_cpu_mem_usage,
4564+
)
4565+
4566+
@classmethod
4567+
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogView4Transformer2DModel
4568+
def load_lora_into_transformer(
4569+
cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
4570+
):
4571+
"""
4572+
This will load the LoRA layers specified in `state_dict` into `transformer`.
4573+
4574+
Parameters:
4575+
state_dict (`dict`):
4576+
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
4577+
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
4578+
encoder lora layers.
4579+
transformer (`CogView4Transformer2DModel`):
4580+
The Transformer model to load the LoRA layers into.
4581+
adapter_name (`str`, *optional*):
4582+
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
4583+
`default_{i}` where i is the total number of adapters being loaded.
4584+
low_cpu_mem_usage (`bool`, *optional*):
4585+
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
4586+
weights.
4587+
"""
4588+
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
4589+
raise ValueError(
4590+
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
4591+
)
4592+
4593+
# Load the layers corresponding to transformer.
4594+
logger.info(f"Loading {cls.transformer_name}.")
4595+
transformer.load_lora_adapter(
4596+
state_dict,
4597+
network_alphas=None,
4598+
adapter_name=adapter_name,
4599+
_pipeline=_pipeline,
4600+
low_cpu_mem_usage=low_cpu_mem_usage,
4601+
)
4602+
4603+
@classmethod
4604+
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
4605+
def save_lora_weights(
4606+
cls,
4607+
save_directory: Union[str, os.PathLike],
4608+
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
4609+
is_main_process: bool = True,
4610+
weight_name: str = None,
4611+
save_function: Callable = None,
4612+
safe_serialization: bool = True,
4613+
):
4614+
r"""
4615+
Save the LoRA parameters corresponding to the UNet and text encoder.
4616+
4617+
Arguments:
4618+
save_directory (`str` or `os.PathLike`):
4619+
Directory to save LoRA parameters to. Will be created if it doesn't exist.
4620+
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
4621+
State dict of the LoRA layers corresponding to the `transformer`.
4622+
is_main_process (`bool`, *optional*, defaults to `True`):
4623+
Whether the process calling this is the main process or not. Useful during distributed training and you
4624+
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
4625+
process to avoid race conditions.
4626+
save_function (`Callable`):
4627+
The function to use to save the state dictionary. Useful during distributed training when you need to
4628+
replace `torch.save` with another method. Can be configured with the environment variable
4629+
`DIFFUSERS_SAVE_MODE`.
4630+
safe_serialization (`bool`, *optional*, defaults to `True`):
4631+
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
4632+
"""
4633+
state_dict = {}
4634+
4635+
if not transformer_lora_layers:
4636+
raise ValueError("You must pass `transformer_lora_layers`.")
4637+
4638+
if transformer_lora_layers:
4639+
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
4640+
4641+
# Save the model
4642+
cls.write_lora_layers(
4643+
state_dict=state_dict,
4644+
save_directory=save_directory,
4645+
is_main_process=is_main_process,
4646+
weight_name=weight_name,
4647+
save_function=save_function,
4648+
safe_serialization=safe_serialization,
4649+
)
4650+
4651+
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
4652+
def fuse_lora(
4653+
self,
4654+
components: List[str] = ["transformer"],
4655+
lora_scale: float = 1.0,
4656+
safe_fusing: bool = False,
4657+
adapter_names: Optional[List[str]] = None,
4658+
**kwargs,
4659+
):
4660+
r"""
4661+
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
4662+
4663+
<Tip warning={true}>
4664+
4665+
This is an experimental API.
4666+
4667+
</Tip>
4668+
4669+
Args:
4670+
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
4671+
lora_scale (`float`, defaults to 1.0):
4672+
Controls how much to influence the outputs with the LoRA parameters.
4673+
safe_fusing (`bool`, defaults to `False`):
4674+
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
4675+
adapter_names (`List[str]`, *optional*):
4676+
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
4677+
4678+
Example:
4679+
4680+
```py
4681+
from diffusers import DiffusionPipeline
4682+
import torch
4683+
4684+
pipeline = DiffusionPipeline.from_pretrained(
4685+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
4686+
).to("cuda")
4687+
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
4688+
pipeline.fuse_lora(lora_scale=0.7)
4689+
```
4690+
"""
4691+
super().fuse_lora(
4692+
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
4693+
)
4694+
4695+
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
4696+
def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
4697+
r"""
4698+
Reverses the effect of
4699+
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
4700+
4701+
<Tip warning={true}>
4702+
4703+
This is an experimental API.
4704+
4705+
</Tip>
4706+
4707+
Args:
4708+
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
4709+
unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
4710+
"""
4711+
super().unfuse_lora(components=components)
4712+
4713+
44094714
class LoraLoaderMixin(StableDiffusionLoraLoaderMixin):
44104715
def __init__(self, *args, **kwargs):
44114716
deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."

src/diffusers/loaders/peft.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -54,6 +54,7 @@
5454
"SanaTransformer2DModel": lambda model_cls, weights: weights,
5555
"Lumina2Transformer2DModel": lambda model_cls, weights: weights,
5656
"WanTransformer3DModel": lambda model_cls, weights: weights,
57+
"CogView4Transformer2DModel": lambda model_cls, weights: weights,
5758
}
5859

5960

0 commit comments

Comments
 (0)