You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Add CogVideoX DDIM Inversion to Community Pipelines (#10956)
* add cogvideox ddim inversion script
* implement as a pipeline, and add documentation
---------
Co-authored-by: Linoy Tsaban <57615435+linoytsaban@users.noreply.github.com>
Copy file name to clipboardExpand all lines: examples/community/README.md
+37Lines changed: 37 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -83,6 +83,7 @@ PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixar
83
83
|[🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111)| A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). |[🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models)|[](https://huggingface.co/spaces/pcuenq/mdm)[](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb)|[M. Tolga Cangöz](https://github.com/tolgacangoz)|
84
84
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
85
85
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
86
+
| CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. |[CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline)| - |[LittleNyima](https://github.com/LittleNyima)|
86
87
87
88
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
88
89
@@ -5222,3 +5223,39 @@ with torch.no_grad():
5222
5223
5223
5224
In the folder examples/pixart there is also a script that can be used to train new models.
5224
5225
Please check the script `train_controlnet_hf_diffusers.sh` on how to start the training.
5226
+
5227
+
# CogVideoX DDIM Inversion Pipeline
5228
+
5229
+
This implementation performs DDIM inversion on the video based on CogVideoX and uses guided attention to reconstruct or edit the inversion latents.
5230
+
5231
+
## Example Usage
5232
+
5233
+
```python
5234
+
import torch
5235
+
5236
+
from examples.community.cogvideox_ddim_inversion import CogVideoXPipelineForDDIMInversion
0 commit comments