|
| 1 | +# Copyright 2024 Google LLC |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +from __future__ import annotations |
| 16 | + |
| 17 | +from collections import UserDict, abc |
| 18 | +import itertools |
| 19 | +import numbers |
| 20 | +import string |
| 21 | +import sys |
| 22 | +from typing import TYPE_CHECKING, Any |
| 23 | + |
| 24 | +import numpy as np |
| 25 | +import pandas as pd |
| 26 | +from pandas.api.extensions import ExtensionArray, ExtensionDtype |
| 27 | +from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike |
| 28 | +from pandas.core.dtypes.common import is_bool_dtype, is_list_like, pandas_dtype |
| 29 | +from pandas.core.indexers import unpack_tuple_and_ellipses |
| 30 | + |
| 31 | +if TYPE_CHECKING: |
| 32 | + from collections.abc import Mapping |
| 33 | + |
| 34 | + from pandas._typing import type_t |
| 35 | + |
| 36 | + |
| 37 | +@pd.api.extensions.register_extension_dtype |
| 38 | +class JSONDtype(pd.api.extensions.ExtensionDtype): |
| 39 | + """Extension dtype for JSON data.""" |
| 40 | + |
| 41 | + # type = str |
| 42 | + |
| 43 | + type = abc.Mapping |
| 44 | + name = "dbjson" |
| 45 | + # na_value = pd.NA # TODO: StringDtype is libmissing.NA |
| 46 | + |
| 47 | + na_value: Mapping[str, Any] = UserDict() |
| 48 | + # _is_numeric = False |
| 49 | + # _is_boolean = False |
| 50 | + |
| 51 | + @classmethod |
| 52 | + def construct_array_type(cls): |
| 53 | + """Return the array type associated with this dtype.""" |
| 54 | + return JSONArray |
| 55 | + |
| 56 | + # @staticmethod |
| 57 | + # def __from_arrow__( |
| 58 | + # array: Union[pyarrow.Array, pyarrow.ChunkedArray] |
| 59 | + # ) -> "JSONArray": |
| 60 | + # """Convert to JSONArray from an Arrow array. |
| 61 | + |
| 62 | + # See: |
| 63 | + # https://pandas.pydata.org/pandas-docs/stable/development/extending.html#compatibility-with-apache-arrow |
| 64 | + # """ |
| 65 | + # if isinstance(array, pyarrow.Array): |
| 66 | + # chunks = [array] |
| 67 | + # else: |
| 68 | + # chunks = array.chunks |
| 69 | + |
| 70 | + # results = [] |
| 71 | + # for arr in chunks: |
| 72 | + # # convert chunk by chunk to numpy and concatenate then, to avoid |
| 73 | + # # overflow for large string data when concatenating the pyarrow arrays |
| 74 | + # arr = arr.to_numpy(zero_copy_only=False) |
| 75 | + # arr = ensure_string_array(arr, na_value=pandas.NA) |
| 76 | + # results.append(arr) |
| 77 | + |
| 78 | + # if len(chunks) == 0: |
| 79 | + # arr = numpy.array([], dtype=str) |
| 80 | + # else: |
| 81 | + # arr = numpy.concatenate(results) |
| 82 | + |
| 83 | + # return JSONArray(arr) |
| 84 | + |
| 85 | + # # TODO: codes from StringDtype |
| 86 | + # # # Bypass validation inside StringArray constructor, see GH#47781 |
| 87 | + # # new_string_array = StringArray.__new__(StringArray) |
| 88 | + # # NDArrayBacked.__init__( |
| 89 | + # # new_string_array, |
| 90 | + # # arr, |
| 91 | + # # StringDtype(storage="python"), |
| 92 | + # # ) |
| 93 | + # # return new_string_array |
| 94 | + |
| 95 | + |
| 96 | +class JSONArray(pd.api.extensions.ExtensionArray): |
| 97 | + """Extension array containing JSON data.""" |
| 98 | + |
| 99 | + dtype = JSONDtype() |
| 100 | + __array_priority__ = 1000 |
| 101 | + |
| 102 | + def __init__(self, values, dtype=None, copy=False) -> None: |
| 103 | + for val in values: |
| 104 | + if not isinstance(val, self.dtype.type): |
| 105 | + raise TypeError(f"All values must be of type {str(self.dtype.type)}: actual {type(val)}") |
| 106 | + self.data = values |
| 107 | + |
| 108 | + # Some aliases for common attribute names to ensure pandas supports |
| 109 | + # these |
| 110 | + self._items = self._data = self.data |
| 111 | + # those aliases are currently not working due to assumptions |
| 112 | + # in internal code (GH-20735) |
| 113 | + # self._values = self.values = self.data |
| 114 | + |
| 115 | + @classmethod |
| 116 | + def _from_sequence(cls, scalars, *, dtype=None, copy=False): |
| 117 | + return cls(scalars) |
| 118 | + |
| 119 | + @classmethod |
| 120 | + def _from_factorized(cls, values, original): |
| 121 | + return cls([UserDict(x) for x in values if x != ()]) |
| 122 | + |
| 123 | + def __getitem__(self, item): |
| 124 | + if isinstance(item, tuple): |
| 125 | + item = unpack_tuple_and_ellipses(item) |
| 126 | + |
| 127 | + if isinstance(item, numbers.Integral): |
| 128 | + return self.data[item] |
| 129 | + elif isinstance(item, slice) and item == slice(None): |
| 130 | + # Make sure we get a view |
| 131 | + return type(self)(self.data) |
| 132 | + elif isinstance(item, slice): |
| 133 | + # slice |
| 134 | + return type(self)(self.data[item]) |
| 135 | + elif not is_list_like(item): |
| 136 | + # e.g. "foo" or 2.5 |
| 137 | + # exception message copied from numpy |
| 138 | + raise IndexError( |
| 139 | + r"only integers, slices (`:`), ellipsis (`...`), numpy.newaxis " |
| 140 | + r"(`None`) and integer or boolean arrays are valid indices" |
| 141 | + ) |
| 142 | + else: |
| 143 | + item = pd.api.indexers.check_array_indexer(self, item) |
| 144 | + if is_bool_dtype(item.dtype): |
| 145 | + return type(self)._from_sequence( |
| 146 | + [x for x, m in zip(self, item) if m], dtype=self.dtype |
| 147 | + ) |
| 148 | + # integer |
| 149 | + return type(self)([self.data[i] for i in item]) |
| 150 | + |
| 151 | + def __setitem__(self, key, value) -> None: |
| 152 | + if isinstance(key, numbers.Integral): |
| 153 | + self.data[key] = value |
| 154 | + else: |
| 155 | + if not isinstance(value, (type(self), abc.Sequence)): |
| 156 | + # broadcast value |
| 157 | + value = itertools.cycle([value]) |
| 158 | + |
| 159 | + if isinstance(key, np.ndarray) and key.dtype == "bool": |
| 160 | + # masking |
| 161 | + for i, (k, v) in enumerate(zip(key, value)): |
| 162 | + if k: |
| 163 | + assert isinstance(v, self.dtype.type) |
| 164 | + self.data[i] = v |
| 165 | + else: |
| 166 | + for k, v in zip(key, value): |
| 167 | + assert isinstance(v, self.dtype.type) |
| 168 | + self.data[k] = v |
| 169 | + |
| 170 | + def __len__(self) -> int: |
| 171 | + return len(self.data) |
| 172 | + |
| 173 | + def __eq__(self, other): |
| 174 | + return NotImplemented |
| 175 | + |
| 176 | + def __ne__(self, other): |
| 177 | + return NotImplemented |
| 178 | + |
| 179 | + def __array__(self, dtype=None, copy=None): |
| 180 | + if dtype is None: |
| 181 | + dtype = object |
| 182 | + if dtype == object: |
| 183 | + # on py38 builds it looks like numpy is inferring to a non-1D array |
| 184 | + return construct_1d_object_array_from_listlike(list(self)) |
| 185 | + return np.asarray(self.data, dtype=dtype) |
| 186 | + |
| 187 | + @property |
| 188 | + def nbytes(self) -> int: |
| 189 | + return sys.getsizeof(self.data) |
| 190 | + |
| 191 | + def isna(self): |
| 192 | + return np.array([x == self.dtype.na_value for x in self.data], dtype=bool) |
| 193 | + |
| 194 | + def take(self, indexer, allow_fill=False, fill_value=None): |
| 195 | + # re-implement here, since NumPy has trouble setting |
| 196 | + # sized objects like UserDicts into scalar slots of |
| 197 | + # an ndarary. |
| 198 | + indexer = np.asarray(indexer) |
| 199 | + msg = ( |
| 200 | + "Index is out of bounds or cannot do a " |
| 201 | + "non-empty take from an empty array." |
| 202 | + ) |
| 203 | + |
| 204 | + if allow_fill: |
| 205 | + # Do not allow any custom na_value |
| 206 | + if fill_value is None: |
| 207 | + fill_value = self.dtype.na_value |
| 208 | + # bounds check |
| 209 | + if (indexer < -1).any(): |
| 210 | + raise ValueError |
| 211 | + try: |
| 212 | + output = [ |
| 213 | + self.data[loc] if loc != -1 else fill_value for loc in indexer |
| 214 | + ] |
| 215 | + except IndexError as err: |
| 216 | + raise IndexError(msg) from err |
| 217 | + else: |
| 218 | + try: |
| 219 | + output = [self.data[loc] for loc in indexer] |
| 220 | + except IndexError as err: |
| 221 | + raise IndexError(msg) from err |
| 222 | + |
| 223 | + return type(self)._from_sequence(output, dtype=self.dtype) |
| 224 | + |
| 225 | + def copy(self): |
| 226 | + return type(self)(self.data[:]) |
| 227 | + |
| 228 | + def astype(self, dtype, copy=True): |
| 229 | + # NumPy has issues when all the dicts are the same length. |
| 230 | + # np.array([UserDict(...), UserDict(...)]) fails, |
| 231 | + # but np.array([{...}, {...}]) works, so cast. |
| 232 | + from pandas.core.arrays.string_ import StringDtype |
| 233 | + |
| 234 | + dtype = pandas_dtype(dtype) |
| 235 | + # needed to add this check for the Series constructor |
| 236 | + if isinstance(dtype, type(self.dtype)) and dtype == self.dtype: |
| 237 | + if copy: |
| 238 | + return self.copy() |
| 239 | + return self |
| 240 | + elif isinstance(dtype, StringDtype): |
| 241 | + value = self.astype(str) # numpy doesn't like nested dicts |
| 242 | + arr_cls = dtype.construct_array_type() |
| 243 | + return arr_cls._from_sequence(value, dtype=dtype, copy=False) |
| 244 | + elif not copy: |
| 245 | + return np.asarray([dict(x) for x in self], dtype=dtype) |
| 246 | + else: |
| 247 | + return np.array([dict(x) for x in self], dtype=dtype, copy=copy) |
| 248 | + |
| 249 | + def unique(self): |
| 250 | + # Parent method doesn't work since np.array will try to infer |
| 251 | + # a 2-dim object. |
| 252 | + return type(self)([dict(x) for x in {tuple(d.items()) for d in self.data}]) |
| 253 | + |
| 254 | + @classmethod |
| 255 | + def _concat_same_type(cls, to_concat): |
| 256 | + data = list(itertools.chain.from_iterable(x.data for x in to_concat)) |
| 257 | + return cls(data) |
| 258 | + |
| 259 | + def _values_for_factorize(self): |
| 260 | + frozen = self._values_for_argsort() |
| 261 | + if len(frozen) == 0: |
| 262 | + # factorize_array expects 1-d array, this is a len-0 2-d array. |
| 263 | + frozen = frozen.ravel() |
| 264 | + return frozen, () |
| 265 | + |
| 266 | + def _values_for_argsort(self): |
| 267 | + # Bypass NumPy's shape inference to get a (N,) array of tuples. |
| 268 | + frozen = [tuple(x.items()) for x in self] |
| 269 | + return construct_1d_object_array_from_listlike(frozen) |
| 270 | + |
| 271 | + def _pad_or_backfill(self, *, method, limit=None, copy=True): |
| 272 | + # GH#56616 - test EA method without limit_area argument |
| 273 | + return super()._pad_or_backfill(method=method, limit=limit, copy=copy) |
0 commit comments