|
77 | 77 | #endif
|
78 | 78 |
|
79 | 79 | // bump if necessary
|
80 |
| -#define LLAMA_MAX_EMBD 8 |
81 | 80 | #define LLAMA_MAX_LAYERS 512
|
82 | 81 | #define LLAMA_MAX_EXPERTS 160 // DeepSeekV2
|
83 | 82 |
|
@@ -3074,8 +3073,8 @@ struct llama_model {
|
3074 | 3073 | struct ggml_tensor * cls_out = nullptr;
|
3075 | 3074 | struct ggml_tensor * cls_out_b = nullptr;
|
3076 | 3075 |
|
3077 |
| - struct ggml_tensor * conv_1d = nullptr; |
3078 |
| - struct ggml_tensor * conv_1d_b = nullptr; |
| 3076 | + struct ggml_tensor * conv1d = nullptr; |
| 3077 | + struct ggml_tensor * conv1d_b = nullptr; |
3079 | 3078 |
|
3080 | 3079 | std::vector<llama_layer> layers;
|
3081 | 3080 |
|
@@ -9498,8 +9497,8 @@ static bool llm_load_tensors(
|
9498 | 9497 | {
|
9499 | 9498 | model.tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
|
9500 | 9499 |
|
9501 |
| - model.conv_1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0); |
9502 |
| - model.conv_1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0); |
| 9500 | + model.conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0); |
| 9501 | + model.conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0); |
9503 | 9502 |
|
9504 | 9503 | // posnet
|
9505 | 9504 | {
|
@@ -17183,8 +17182,8 @@ struct llm_build_context {
|
17183 | 17182 |
|
17184 | 17183 | cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
|
17185 | 17184 |
|
17186 |
| - cur = ggml_conv_1d_ph(ctx0, model.conv_1d, cur, 1, 1); |
17187 |
| - cur = ggml_add(ctx0, cur, model.conv_1d_b); |
| 17185 | + cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1); |
| 17186 | + cur = ggml_add(ctx0, cur, model.conv1d_b); |
17188 | 17187 |
|
17189 | 17188 | // posnet
|
17190 | 17189 | for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
|
|
0 commit comments