@@ -7502,78 +7502,154 @@ void ggml_compute_forward_ssm_conv(
7502
7502
}
7503
7503
7504
7504
// ggml_compute_forward_ssm_scan
7505
-
7506
7505
static void ggml_compute_forward_ssm_scan_f32(
7507
- const ggml_compute_params * params,
7508
- ggml_tensor * dst) {
7509
- const ggml_tensor * src0 = dst->src[0]; // s
7510
- const ggml_tensor * src1 = dst->src[1]; // x
7511
- const ggml_tensor * src2 = dst->src[2]; // dt
7512
- const ggml_tensor * src3 = dst->src[3]; // A
7513
- const ggml_tensor * src4 = dst->src[4]; // B
7514
- const ggml_tensor * src5 = dst->src[5]; // C
7506
+ const struct ggml_compute_params * params,
7507
+ struct ggml_tensor * dst) {
7508
+ const struct ggml_tensor * src0 = dst->src[0]; // s {d_state, dim, n_head, n_seqs+}
7509
+ const struct ggml_tensor * src1 = dst->src[1]; // x {dim, n_head, n_seq_tokens, n_seqs}
7510
+ const struct ggml_tensor * src2 = dst->src[2]; // dt {n_head, n_seq_tokens, n_seqs}
7511
+ const struct ggml_tensor * src3 = dst->src[3]; // A {d_state, n_head} or {1, n_head}
7512
+ const struct ggml_tensor * src4 = dst->src[4]; // B {d_state, n_group, n_seq_tokens, n_seqs}
7513
+ const struct ggml_tensor * src5 = dst->src[5]; // C {d_state, n_group, n_seq_tokens, n_seqs}
7514
+ const struct ggml_tensor * src6 = dst->src[6]; // ids {n_seqs}
7515
7515
7516
7516
const int ith = params->ith;
7517
7517
const int nth = params->nth;
7518
7518
7519
- const int64_t nc = src0->ne[0]; // d_state
7520
- const int64_t nr = src0->ne[1]; // d_inner
7521
- const int64_t n_t = src1->ne[1]; // number of tokens per sequence
7522
- const int64_t n_s = src0->ne[2]; // number of sequences in the batch
7519
+ const int64_t nc = src0->ne[0]; // d_state
7520
+ const int64_t nr = src0->ne[1]; // dim
7521
+ const int64_t nh = src1->ne[1]; // n_head
7522
+ const int64_t ng = src4->ne[1];
7523
+ const int64_t nt = src1->ne[2]; // number of tokens per sequence
7524
+ const int64_t ns = src1->ne[3]; // number of sequences in the batch
7525
+
7526
+ // can't use ggml_nbytes because src1 is not necessarily contiguous
7527
+ const int64_t s_off = ggml_nelements(src1) * ggml_element_size(src1);
7523
7528
7524
- GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
7529
+ GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*ns == ggml_nelements(dst));
7525
7530
GGML_ASSERT(src0->nb[0] == sizeof(float));
7526
7531
GGML_ASSERT(src1->nb[0] == sizeof(float));
7527
7532
GGML_ASSERT(src2->nb[0] == sizeof(float));
7528
7533
GGML_ASSERT(src3->nb[0] == sizeof(float));
7529
7534
GGML_ASSERT(src4->nb[0] == sizeof(float));
7530
7535
GGML_ASSERT(src5->nb[0] == sizeof(float));
7531
- // required for the dot product between s and C
7532
- GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
7533
- // required for per-sequence offsets for states
7534
- GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
7535
- // required to get correct offset for state destination (i.e. src1->nb[3])
7536
- GGML_ASSERT(src1->nb[3] == src1->ne[0]*src1->ne[1]*src1->ne[2]*sizeof(float));
7536
+ GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
7537
+ // allows optimizing the modulo since n_group should be a power of 2
7538
+ GGML_ASSERT((ng & -ng) == ng);
7539
+
7540
+ // heads per thread
7541
+ const int dh = (nh + nth - 1)/nth;
7542
+
7543
+ // head range for this thread
7544
+ const int ih0 = dh*ith;
7545
+ const int ih1 = MIN(ih0 + dh, nh);
7546
+
7547
+ const int32_t * ids = (const int32_t *) src6->data;
7548
+
7549
+ for (int i3 = 0; i3 < ns; ++i3) {
7550
+ const float * s0 = (const float *) ((const char *) src0->data + ids[i3]*(src0->nb[3])); // {d_state, dim, nh, ns}
7551
+ float * s = ( float *) (( char *) dst->data + i3*(src0->nb[3]) + s_off); // {d_state, dim, nh, ns}
7552
+
7553
+ for (int i2 = 0; i2 < nt; ++i2) {
7554
+ const float * x = (const float *) ((const char *) src1->data + i2*(src1->nb[2]) + i3*(src1->nb[3])); // {dim, nh, nt, ns}
7555
+ const float * dt = (const float *) ((const char *) src2->data + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {nh, nt, ns}
7556
+ const float * A = (const float *) ((const char *) src3->data); // {d_state, nh} or {1, nh}
7557
+ const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[2]) + i3*(src4->nb[3])); // {d_state, ng, nt, ns}
7558
+ const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[2]) + i3*(src5->nb[3])); // {d_state, ng, nt, ns}
7559
+ float * y = ( float *) (( char *) dst->data + i2*(nh*nr*sizeof(float)) + i3*(nt*nh*nr*sizeof(float))); // {dim, nh, nt, ns}
7560
+
7561
+ if (src3->ne[0] == 1) {
7562
+ // Mamba-2 has a scalar decay factor per head; dA can be outside the state-wise loop
7563
+
7564
+ // n_head
7565
+ for (int h = ih0; h < ih1; ++h) {
7566
+ // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
7567
+ const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
7568
+ const float dA = expf(dt_soft_plus * A[h]);
7569
+
7570
+ // dim
7571
+ for (int i1 = 0; i1 < nr; ++i1) {
7572
+ const int ii = i1 + h*nr;
7573
+ const float x_dt = x[ii] * dt_soft_plus;
7574
+ float sumf = 0.0f;
7575
+ #if defined(GGML_SIMD)
7576
+ const int np = (nc & ~(GGML_F32_STEP - 1));
7537
7577
7538
- // rows per thread
7539
- const int dr = (nr + nth - 1)/nth;
7578
+ GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
7540
7579
7541
- // row range for this thread
7542
- const int ir0 = dr*ith;
7543
- const int ir1 = MIN(ir0 + dr, nr);
7544
- const int ir = ir1 - ir0;
7580
+ GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
7581
+ GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
7545
7582
7546
- for (int i3 = 0; i3 < n_s; ++i3) {
7547
- for (int i2 = 0; i2 < n_t; ++i2) {
7548
- const float * s0 = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); // {d_state, d_inner, n_s}
7549
- const float * x = (const float *) ((const char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
7550
- const float * dt = (const float *) ((const char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {d_inner, n_t, n_s}
7551
- const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
7552
- const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
7553
- const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
7554
- float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
7555
- float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
7556
-
7557
- // use the output as the source for the next token-wise iterations
7558
- if (i2 > 0) { s0 = s; }
7583
+ GGML_F32_VEC ax[GGML_F32_ARR];
7584
+ GGML_F32_VEC ay[GGML_F32_ARR];
7585
+ GGML_F32_VEC az[GGML_F32_ARR];
7559
7586
7560
- // d_inner
7561
- for (int i1 = 0; i1 < ir; ++i1) {
7562
- // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
7563
- float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
7564
- float x_dt = x[i1] * dt_soft_plus;
7565
- float sumf = 0.0f;
7566
- // d_state
7567
- for (int i0 = 0; i0 < nc; ++i0) {
7568
- int i = i0 + i1*nc;
7569
- // state = prev_state * dA + dB * x
7570
- float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
7571
- // y = rowwise_dotprod(state, C)
7572
- sumf += state * C[i0];
7573
- s[i] = state;
7587
+ for (int i = 0; i < np; i += GGML_F32_STEP) {
7588
+ for (int j = 0; j < GGML_F32_ARR; j++) {
7589
+ ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
7590
+ ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
7591
+ az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
7592
+
7593
+ ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
7594
+ ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
7595
+
7596
+ ax[j] = GGML_F32_VEC_ADD(ax[j], ay[j]);
7597
+
7598
+ sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], az[j]);
7599
+
7600
+ GGML_F32_VEC_STORE(s + i + j*GGML_F32_EPR + ii*nc, ax[j]);
7601
+ }
7602
+ }
7603
+
7604
+ // reduce sum0..sum3 to sum0
7605
+ GGML_F32_VEC_REDUCE(sumf, sum);
7606
+ #else
7607
+ const int np = 0;
7608
+ #endif
7609
+ // d_state
7610
+ for (int i0 = np; i0 < nc; ++i0) {
7611
+ const int i = i0 + ii*nc;
7612
+ const int ig = i0 + (h & (ng - 1))*nc;
7613
+ // state = prev_state * dA + dB * x
7614
+ const float state = (s0[i] * dA) + (B[ig] * x_dt);
7615
+ // y = rowwise_dotprod(state, C)
7616
+ sumf += state * C[ig];
7617
+ s[i] = state;
7618
+ }
7619
+ y[ii] = sumf;
7620
+ }
7621
+ }
7622
+ } else {
7623
+ // Mamba-1 has an element-wise decay factor for the states
7624
+
7625
+ // n_head
7626
+ for (int h = ih0; h < ih1; ++h) {
7627
+ // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
7628
+ const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
7629
+
7630
+ // dim
7631
+ for (int i1 = 0; i1 < nr; ++i1) {
7632
+ const int ii = i1 + h*nr;
7633
+ const float x_dt = x[ii] * dt_soft_plus;
7634
+ float sumf = 0.0f;
7635
+ // NOTE: can't really use GGML_SIMD here because d_state is usually 16
7636
+ // and also because expf is used within the loop.
7637
+ // d_state
7638
+ for (int i0 = 0; i0 < nc; ++i0) {
7639
+ const int i = i0 + ii*nc;
7640
+ const int ig = i0 + (h & (ng - 1))*nc;
7641
+ // state = prev_state * dA + dB * x
7642
+ const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
7643
+ // y = rowwise_dotprod(state, C)
7644
+ sumf += state * C[ig];
7645
+ s[i] = state;
7646
+ }
7647
+ y[ii] = sumf;
7648
+ }
7574
7649
}
7575
- y[i1] = sumf;
7576
7650
}
7651
+ // use the output as the source when it's not the first token-wise iteration
7652
+ s0 = s;
7577
7653
}
7578
7654
}
7579
7655
}
0 commit comments