File tree Expand file tree Collapse file tree 2 files changed +32
-1
lines changed Expand file tree Collapse file tree 2 files changed +32
-1
lines changed Original file line number Diff line number Diff line change @@ -509,6 +509,37 @@ Returns a `logical` scalar that is `.true.` if the input matrix is skew-symmetri
509
509
{!example/linalg/example_is_skew_symmetric.f90!}
510
510
```
511
511
512
+ ## ` hermitian ` - Compute the Hermitian version of a rank-2 matrix
513
+
514
+ ### Status
515
+
516
+ Experimental
517
+
518
+ ### Description
519
+
520
+ Compute the Hermitian version of a rank-2 matrix.
521
+ For ` complex ` matrices, the function returns the conjugate transpose (` conjg(transpose(a)) ` ).
522
+ For ` real ` or ` integer ` matrices, the function returns the transpose (` transpose(a) ` ).
523
+
524
+ ### Syntax
525
+
526
+ ` h = ` [[ stdlib_linalg(module): hermitian (interface)]] ` (a) `
527
+
528
+ ### Arguments
529
+
530
+ ` a ` : Shall be a rank-2 array of type ` integer ` , ` real ` , or ` complex ` . The input matrix ` a ` is not modified.
531
+
532
+ ### Return value
533
+
534
+ Returns a rank-2 array of the same shape and type as ` a ` . If ` a ` is of type ` complex ` , the Hermitian matrix is computed as ` conjg(transpose(a)) ` .
535
+ For ` real ` or ` integer ` types, it is equivalent to ` transpose(a) ` .
536
+
537
+ ### Example
538
+
539
+ ``` fortran
540
+ {!example/linalg/example_hermitian.f90!}
541
+ ```
542
+
512
543
## ` is_hermitian ` - Checks if a matrix is Hermitian
513
544
514
545
### Status
Original file line number Diff line number Diff line change @@ -312,7 +312,7 @@ module stdlib_linalg
312
312
!! AH = hermitian(A)
313
313
!! ```
314
314
!!
315
- !! [Specification](../page/specs/stdlib_linalg.html#hermitian)
315
+ !! [Specification](../page/specs/stdlib_linalg.html#hermitian-compute-the-hermitian-version-of-a-rank-2-matrix )
316
316
!!
317
317
318
318
#:for k1, t1 in RCI_KINDS_TYPES
You can’t perform that action at this time.
0 commit comments