|
12 | 12 | package io.vertx.sqlclient.impl.codec;
|
13 | 13 |
|
14 | 14 | import io.netty.buffer.ByteBuf;
|
| 15 | +import io.netty.buffer.Unpooled; |
15 | 16 |
|
| 17 | +/** |
| 18 | + * This is based on this algorithm: https://lemire.me/blog/2022/01/21/swar-explained-parsing-eight-digits/ |
| 19 | + * Which can be explained as follows: |
| 20 | + * <pre> |
| 21 | + * |
| 22 | + * Given 8 ASCII digits as: b1b2b3b4b5b6b7b8 |
| 23 | + * |
| 24 | + * eg: "12345678" |
| 25 | + * |
| 26 | + * which byte[] := { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38 } |
| 27 | + * "1" "2" "3" "4" "5" "6" "7" "8" |
| 28 | + * |
| 29 | + * reading is in Little Endian form will read the lower indexes first placing them as lower addresses |
| 30 | + * as can be seen in the hex representation, where "1" is now in the rightmost position. |
| 31 | + * |
| 32 | + * hex: |
| 33 | + * 0x38_37_36_35_34_33_32_31- |
| 34 | + * 0x30_30_30_30_30_30_30_30= |
| 35 | + * 0x80_07_06_05_04_03_02_01 |
| 36 | + * |
| 37 | + * digits = (digits * 10) + (digits >> 8); |
| 38 | + * |
| 39 | + * 0x50_46_3c_32_28_1e_14_0a + ~ digits * 10 + |
| 40 | + * 0x00_80_70_60_50_40_30_21 = ~ digits >> 8 = |
| 41 | + * 0x50_4e_43_38_2d_22_17_0c |
| 42 | + * now ^ ^ ^ ^ |
| 43 | + * | | | | |
| 44 | + * g4=10*b7+b8 | | | |
| 45 | + * g3=10*b5+b6 | | |
| 46 | + * g2=10*b3+b4 | |
| 47 | + * g1=10*b1+b2 |
| 48 | + * |
| 49 | + * These are the relevant results we care about, while the others are useless |
| 50 | + * and subsequent masks will take care to ignore them. |
| 51 | + * |
| 52 | + * Now the aggregation parts: |
| 53 | + * |
| 54 | + * digits & U64_MASK := 0x00_00_00_38_00_00_00_0c |
| 55 | + * |
| 56 | + * This will isolate 10*b3+b4 and 10*b7+b8, trying to correctly compute: |
| 57 | + * |
| 58 | + * 1000000*(10*b1+b2) + 100*(10*b5+b6), somehow. |
| 59 | + * |
| 60 | + * The mask used to perform the multiplication is |
| 61 | + * |
| 62 | + * U64_FIRST_THIRD := (1000000L << 32) + 100 := 0x00_0f_42_40_00_00_00_64 |
| 63 | + * |
| 64 | + * 0x00_00_00_38_00_00_00_0c * |
| 65 | + * 0x00_0f_42_40_00_00_00_64 = |
| 66 | + * 0x00_b7_30_e0_00_00_04_b0 |
| 67 | + * |
| 68 | + * |
| 69 | + * which 0x00_b7_30_e0 part (let's ignore the second half 00_00_04_b0, which is 1200) |
| 70 | + * |
| 71 | + * is, in decimal: |
| 72 | + * |
| 73 | + * 12005600 (!!!) === 1000000*(10*1 + 2) + 100*(10*5 + 6) = 1*10000000 + 2*1000000 + 5*1000 + 6*100 |
| 74 | + * |
| 75 | + * For the second part |
| 76 | + * |
| 77 | + * ie 10000*(10*b3 + b4) + 10*b7 + b8 |
| 78 | + * |
| 79 | + * we first isolate the 2 paris (g2 and g4) with (digits >> 16) & U64_MASK (which move them to the right by 2 bytes), getting |
| 80 | + * |
| 81 | + * 0x00_00_4e_00_00_00_22 * |
| 82 | + * 0x00_27_10_00_00_00_01 = |
| 83 | + * 0x05_30_6e_00_00_00_22 |
| 84 | + * |
| 85 | + * which, once again, has it leftmost part |
| 86 | + * |
| 87 | + * 0x05_30_6e === 340078 (!!!!) === 10000*(10*3 + 4) + 10*7 + 8 = 3*100000 + 4*10000 + 7*10 + 8 |
| 88 | + * |
| 89 | + * |
| 90 | + * shifting both left by 32 and adding them, the total digit is done. |
| 91 | + * </pre> |
| 92 | + */ |
16 | 93 | public class CommonCodec {
|
17 |
| - /** |
18 |
| - * Decode the specified {@code buff} formatted as a decimal string starting at the readable index |
19 |
| - * with the specified {@code length} to a long. |
20 |
| - * |
21 |
| - * @param index the hex string index |
22 |
| - * @param len the hex string length |
23 |
| - * @param buff the byte buff to read from |
24 |
| - * @return the decoded value as a long |
25 |
| - */ |
| 94 | + |
| 95 | + // https://lemire.me/blog/2022/01/21/swar-explained-parsing-eight-digits/ |
| 96 | + private static final long U64_MASK = 0x000000FF000000FFL; |
| 97 | + private static final long U64_FIRST_THIRD = (1000000L << 32) + 100; |
| 98 | + private static final long U64_SECOND_FOURTH = (10000L << 32) + 1; |
| 99 | + |
| 100 | + private static long parseEigthDigitsLE(long digits) { |
| 101 | + digits -= 0x3030303030303030L; |
| 102 | + digits = (digits * 10) + (digits >> 8); |
| 103 | + return (((digits & U64_MASK) * U64_FIRST_THIRD) + (((digits >> 16) & U64_MASK) * U64_SECOND_FOURTH)) >> 32; |
| 104 | + } |
| 105 | + |
| 106 | + private static final int U32_MASK = 0x00FF00FF; |
| 107 | + private static final int U32_FIRST_SECOND = (100 << 16) + 1; |
| 108 | + |
| 109 | + private static int parseFourDigitsLE(int digits) { |
| 110 | + digits -= 0x30303030; |
| 111 | + digits = (digits * 10) + (digits >> 8); |
| 112 | + return ((digits & U32_MASK) * U32_FIRST_SECOND) >> 16; |
| 113 | + } |
| 114 | + |
| 115 | + private static short parseTwoDigitsLE(short digits) { |
| 116 | + digits -= 0x3030; |
| 117 | + return (short) ((digits & 0xFF) * 10 + ((digits >> 8) & 0xFF)); |
| 118 | + } |
| 119 | + |
| 120 | + private static byte parseOneDigit(byte digit) { |
| 121 | + return (byte) (digit - 0x30); |
| 122 | + } |
| 123 | + |
| 124 | + public static void main(String[] args) { |
| 125 | + ByteBuf buff = Unpooled.buffer(); |
| 126 | + buff.writeCharSequence("-123", java.nio.charset.StandardCharsets.UTF_8); |
| 127 | + System.out.println(decodeDecStringToLong(0, buff.readableBytes(), buff)); |
| 128 | + } |
| 129 | + |
| 130 | + public static int decodeDecStringToInt(int index, int len, ByteBuf buff) { |
| 131 | + // 10 + sign = 32bit |
| 132 | + return 0; |
| 133 | + } |
| 134 | + |
| 135 | + public static int decodeDecStringToShort(int index, int len, ByteBuf buff) { |
| 136 | + // 5 + sign = 16bit |
| 137 | + return 0; |
| 138 | + } |
| 139 | + |
26 | 140 | public static long decodeDecStringToLong(int index, int len, ByteBuf buff) {
|
27 |
| - long value = 0; |
28 |
| - if (len > 0) { |
29 |
| - int to = index + len; |
30 |
| - boolean neg = false; |
31 |
| - if (buff.getByte(index) == '-') { |
32 |
| - neg = true; |
33 |
| - index++; |
34 |
| - } |
35 |
| - while (index < to) { |
36 |
| - byte ch = buff.getByte(index++); |
37 |
| - byte nibble = (byte) (ch - '0'); |
38 |
| - value = value * 10 + nibble; |
| 141 | + byte firstByte = buff.getByte(index); |
| 142 | + final boolean negative = firstByte == '-'; |
| 143 | + // handling these fast-path to avoid using get<something>LE which is not free |
| 144 | + if (len <= 2) { |
| 145 | + if (len == 1) { |
| 146 | + if (negative) { |
| 147 | + throw new IllegalArgumentException("Invalid negative number: missing digits"); |
| 148 | + } |
| 149 | + return parseOneDigit(firstByte); |
39 | 150 | }
|
40 |
| - if (neg) { |
41 |
| - value = -value; |
| 151 | + assert len == 2; |
| 152 | + if (negative) { |
| 153 | + return -parseOneDigit(buff.getByte(index + 1)); |
42 | 154 | }
|
| 155 | + return parseOneDigit(firstByte) * 10 + parseOneDigit(buff.getByte(index + 1)); |
| 156 | + } |
| 157 | + if (negative) { |
| 158 | + index++; |
| 159 | + len--; |
| 160 | + } |
| 161 | + long lessThanEight = len % 8; |
| 162 | + if (lessThanEight > 0) { |
| 163 | + return lessThanEightDigitsUnrolled(negative, index, len, buff); |
| 164 | + } |
| 165 | + throw new UnsupportedOperationException("Not implemented yet"); |
| 166 | + } |
| 167 | + |
| 168 | + private static int lessThanEightDigitsUnrolled(boolean negative, int index, int len, ByteBuf buff) { |
| 169 | + assert len > 0 && len < 8; |
| 170 | + int digits = 0; |
| 171 | + int multiplier = 1; |
| 172 | + // len >= 4 |
| 173 | + if ((len & Integer.BYTES) != 0) { |
| 174 | + digits = parseFourDigitsLE(buff.getIntLE(index)); |
| 175 | + index += Integer.BYTES; |
| 176 | + multiplier = 100; |
| 177 | + } |
| 178 | + // len >= 2 |
| 179 | + if ((len & Short.BYTES) != 0) { |
| 180 | + digits = digits * multiplier + parseTwoDigitsLE(buff.getShortLE(index)); |
| 181 | + index += Short.BYTES; |
| 182 | + multiplier = 10; |
| 183 | + } |
| 184 | + // len >= 1 |
| 185 | + if ((len & Byte.BYTES) != 0) { |
| 186 | + digits = digits * multiplier + parseOneDigit(buff.getByte(index)); |
43 | 187 | }
|
44 |
| - return value; |
| 188 | + return negative ? -digits : digits; |
45 | 189 | }
|
| 190 | + |
| 191 | + public static byte decodeDecStringToByte(int index, int len, ByteBuf buff) { |
| 192 | + // 3 + sign = 8bit |
| 193 | + return 0; |
| 194 | + } |
| 195 | + |
46 | 196 | }
|
0 commit comments