Skip to content

Arithmetic operations accept numpy arrays #102

Open
@ev-br

Description

@ev-br

Supposedly, mixing array-api-strict arrays with other array types should not be allowed.

Or all of them should be allowed, but then we'd need to specify something like __array_priority__ and that opens quite a Pandora box, so I guess not?

In [5]: import numpy as np

In [6]: import array_api_strict as xp

In [7]: xp.arange(5, dtype=xp.int8) + np.arange(5, dtype=np.complex64)
Out[7]: array([0.+0.j, 2.+0.j, 4.+0.j, 6.+0.j, 8.+0.j], dtype=complex64)           # xp + np -> np !

In [8]: import torch

In [10]: xp.arange(5, dtype=xp.int8) + torch.arange(5)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[10], line 1
----> 1 xp.arange(5, dtype=xp.int8) + torch.arange(5)

TypeError: unsupported operand type(s) for +: 'Array' and 'Tensor'

In [11]: import jax.numpy as jnp

In [12]: xp.arange(5, dtype=xp.int8) + jnp.arange(5, dtype=jnp.complex64)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[12], line 1
----> 1 xp.arange(5, dtype=xp.int8) + jnp.arange(5, dtype=jnp.complex64)

TypeError: unsupported operand type(s) for +: 'Array' and 'jaxlib.xla_extension.ArrayImpl'

Metadata

Metadata

Assignees

No one assigned

    Labels

    blocked by upstreamA feature that requires better upstream support

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions